Journal of Combinatorial Optimization ( IF 0.9 ) Pub Date : 2024-10-22 , DOI: 10.1007/s10878-024-01220-z Zoran Lj. Maksimović
The Maximum Bisection Problem (MBP) is a well-known combinatorial optimization problem that has been proven to be NP-hard. The maximum bisection of a graph is the partition of its set of vertices into two subsets with an equal number of vertices, where the weight of the edge cut is maximal. This work introduces a connected multidimensional generalization of the Maximum Bisection Problem. In this NP-hard problem, weights on edges are vectors of non-negative numbers, and subgraphs induced by partitions must be connected. A mixed integer linear programming (MILP) formulation is proposed with proof of its correctness. The MILP formulation of the problem has a polynomial number of variables and constraints
中文翻译:
用于连通多维最大等分问题的 MILP 模型
最大等分问题 (MBP) 是一个众所周知的组合优化问题,已被证明是 NP 困难的。图形的最大等分是将其顶点集划分为两个顶点数相等的子集,其中边切割的权重最大。这项工作介绍了最大等分问题的连通多维泛化。在这个 NP-hard 问题中,边上的权重是非负数的向量,分区诱导的子图必须连接起来。提出了一种混合整数线性规划 (MILP) 公式,并证明了其正确性。问题的 MILP 公式具有多项式数的变量和约束