当前位置: X-MOL 学术Nat. Astron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-temperature dust formation in carbon-rich astrophysical environments
Nature Astronomy ( IF 12.9 ) Pub Date : 2024-10-23 , DOI: 10.1038/s41550-024-02393-7
Guy Libourel, Marwane Mokhtari, Vandad-Julien Rohani, Bernard Bourdon, Clément Ganino, Eric Lagadec, Philippe Vennéguès, Vincent Guigoz, François Cauneau, Laurent Fulcheri

Condensation processes, which are responsible for the main chemical differences between gas and solids in the Galaxy, are the major mechanisms that control the cycle of dust from evolved stars to planetary systems. However, they are still poorly understood, mainly because the thermodynamics and kinetic models of nucleation or grain growth lack experimental data. To bridge this gap, we used a large-volume three-phase alternating-current plasma torch to obtain a full high-temperature condensation sequence at an elevated carbon-to-oxygen ratio from a fluxed chondritic gas composition. We show that the crystallized suites of carbides, silicides, nitrides, sulfides, oxides and silicates and the bulk composition of the condensates are properly modelled by a kinetically inhibited condensation scenario controlled by gas flow. This validates the thermodynamic predictions of the condensation sequence at a high carbon-to-oxygen ratio. On this basis and using appropriate optical properties, we also demonstrate the influence of pressure on dust chemistry as well as the low probability of forming and detecting iron silicides in asymptotic giant branch C-rich circumstellar environments as well as in our chondritic meteorites. By demonstrating the potential of predicting dust mineralogy in these environments, this approach holds high promise for quantitatively characterizing dust composition and formation in diverse astrophysical settings.



中文翻译:


在富碳天体物理环境中形成高温尘埃



冷凝过程是造成银河系中气体和固体之间主要化学差异的原因,是控制尘埃从演化恒星到行星系统循环的主要机制。然而,人们对它们仍然知之甚少,主要是因为成核或晶粒生长的热力学和动力学模型缺乏实验数据。为了弥合这一差距,我们使用了大容量三相交流等离子体炬,从通量软骨气体成分中以较高的碳氧比获得了完整的高温冷凝序列。我们表明,碳化物、硅化物、氮化物、硫化物、氧化物和硅酸盐的结晶套件以及凝析物的本体组成是通过由气流控制的动力学抑制冷凝场景正确建模的。这验证了高碳氧比下冷凝序列的热力学预测。在此基础上,利用适当的光学特性,我们还证明了压力对尘埃化学的影响,以及在渐近的富含 C 的巨分支星际环境以及我们的软骨陨石中形成和检测铁硅化物的可能性很低。通过证明在这些环境中预测尘埃矿物学的潜力,这种方法为在不同天体物理环境中定量表征尘埃成分和形成具有很高的前景。

更新日期:2024-10-23
down
wechat
bug