当前位置:
X-MOL 学术
›
Rev. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Magnetic particles–integrated microfluidics: from physical mechanisms to biological applications
Reviews in Chemical Engineering ( IF 4.9 ) Pub Date : 2024-10-22 , DOI: 10.1515/revce-2023-0074 Amirhosein Paryab, Mahshid Saghatchi, Bahareh Zarin, Shadi Behsam, Sorosh Abdollahi, Adrine Malek Khachatourian, Muhammet S. Toprak, Shukufe Amukarimi, Anjum Qureshi, Javed H. Niazi
Reviews in Chemical Engineering ( IF 4.9 ) Pub Date : 2024-10-22 , DOI: 10.1515/revce-2023-0074 Amirhosein Paryab, Mahshid Saghatchi, Bahareh Zarin, Shadi Behsam, Sorosh Abdollahi, Adrine Malek Khachatourian, Muhammet S. Toprak, Shukufe Amukarimi, Anjum Qureshi, Javed H. Niazi
Magnetic nanoparticles (MNPs) have garnered significant attention in biomedical applications. Due to their large surface area and tunable properties, MNPs are used in microfluidic systems, which allow for the manipulation and control of fluids at micro- or nanoscale. Using microfluidic systems allows for a faster, less expensive, and more efficient approach to applications like bioanalysis. MNPs in microfluidics can precisely identify and detect bioanalytes on a single chip by controlling analytes in conjunction with magnetic particles (MPs) and separating various particles for analytical functions at the micro- and nanoscales. Numerous uses for these instruments, including cell-based research, proteomics, and diagnostics, have been reported. The successful reduction in the size of analytical assays and the creation of compact LOC platforms have been made possible with the assistance of microfluidics. Microfluidics is a highly effective method for manipulating fluids as a continuous flow or discrete droplets. Since the implementation of the LOC technology, various microfluidic methods have been developed to improve the efficiency and precision of sorting, separating, or isolating cells or microparticles from their original samples. These techniques aim to surpass traditional laboratory procedures. This review focuses on the recent progress in utilizing microfluidic systems that incorporate MNPs for biological applications.
中文翻译:
磁粒子集成微流体:从物理机制到生物应用
磁性纳米颗粒 (MNP) 在生物医学应用中引起了极大的关注。由于其大表面积和可调特性,MNP 用于微流体系统,允许在微米或纳米尺度上操纵和控制流体。使用微流体系统可以更快、更便宜、更高效地处理生物分析等应用。微流体中的 MNP 可以通过控制分析物和磁珠 (MP) 并分离各种颗粒以在微米和纳米尺度上实现分析功能,从而在单个芯片上精确识别和检测生物分析物。这些仪器的许多用途,包括基于细胞的研究、蛋白质组学和诊断。在微流体的帮助下,成功缩小了分析分析的规模并创建了紧凑的 LOC 平台。微流体是一种将流体作为连续流或离散液滴进行操纵的高效方法。自实施 LOC 技术以来,已经开发了各种微流体方法,以提高从原始样品中分选、分离或分离细胞或微粒的效率和精度。这些技术旨在超越传统的实验室程序。本综述重点介绍了将 MNP 用于生物应用的微流控系统的最新进展。
更新日期:2024-10-22
中文翻译:
磁粒子集成微流体:从物理机制到生物应用
磁性纳米颗粒 (MNP) 在生物医学应用中引起了极大的关注。由于其大表面积和可调特性,MNP 用于微流体系统,允许在微米或纳米尺度上操纵和控制流体。使用微流体系统可以更快、更便宜、更高效地处理生物分析等应用。微流体中的 MNP 可以通过控制分析物和磁珠 (MP) 并分离各种颗粒以在微米和纳米尺度上实现分析功能,从而在单个芯片上精确识别和检测生物分析物。这些仪器的许多用途,包括基于细胞的研究、蛋白质组学和诊断。在微流体的帮助下,成功缩小了分析分析的规模并创建了紧凑的 LOC 平台。微流体是一种将流体作为连续流或离散液滴进行操纵的高效方法。自实施 LOC 技术以来,已经开发了各种微流体方法,以提高从原始样品中分选、分离或分离细胞或微粒的效率和精度。这些技术旨在超越传统的实验室程序。本综述重点介绍了将 MNP 用于生物应用的微流控系统的最新进展。