当前位置:
X-MOL 学术
›
Astrophys. J. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Formation and Eruption of a Hot Channel Magnetic Flux Rope in a Nested Double Null Magnetic System
The Astrophysical Journal Letters ( IF 8.8 ) Pub Date : 2024-10-22 , DOI: 10.3847/2041-8213/ad84ea Surui Yao, Yuandeng Shen, Chengrui Zhou, Dongxu Liu, Xinping Zhou
The Astrophysical Journal Letters ( IF 8.8 ) Pub Date : 2024-10-22 , DOI: 10.3847/2041-8213/ad84ea Surui Yao, Yuandeng Shen, Chengrui Zhou, Dongxu Liu, Xinping Zhou
The coronal magnetic topology significantly affects the outcome of magnetic flux rope (MFR) eruptions. The recently reported nested double null magnetic system remains unclear as to how it affects MFR eruptions. Using observations from the New Vacuum Solar Telescope and the Solar Dynamics Observatory, we studied the formation and successful eruption of a hot channel MFR from NOAA active region AR 12173 on 2014 September 28. We observed that a hot channel MFR formed and erupted as a coronal mass ejection (CME), and the magnetic field of the source region was a nested double null magnetic system in which an inner magnetic null point system was nested by an outer fan–spine magnetic system. Observational analysis suggests that the origin of the MFR was due to magnetic reconnection at the inner null point, which was triggered by the photospheric swirling motions. The long-term shearing motion in the source region throughout around 26 hr might accumulate enough energy to power the eruption. Since previous studies showed that MFR eruptions from nested double null magnetic systems often result in weak jets and stalled or failed eruptions, it is hard to understand the generation of the large-scale CME in our case. A detailed comparison with previous studies reveals that the birth location of the MFR relative to the inner null point might be the critical physical factor for determining whether an MFR can erupt successfully or not in such a particular nested double null magnetic system.
中文翻译:
嵌套式双零磁系统中热通道磁通绳的形成和喷发
日冕磁拓扑结构显著影响磁通绳 (MFR) 喷发的结果。最近报道的嵌套式双零点磁系统仍不清楚它如何影响 MFR 喷发。利用新真空太阳望远镜和太阳动力学天文台的观测结果,我们研究了 2014 年 9 月 28 日来自 NOAA 活跃区域 AR 12173 的热通道 MFR 的形成和成功喷发。我们观察到热通道 MFR 以日冕物质抛射 (CME) 的形式形成和爆发,源区的磁场是一个嵌套的双零点磁系统,其中内部磁性零点系统嵌套着外部扇脊磁系统。观测分析表明,MFR 的起源是由于内部零点的磁重连接,这是由光球层旋转运动触发的。源区持续约 26 小时的长期剪切运动可能会积累足够的能量来为喷发提供动力。由于先前的研究表明,嵌套式双零磁系统的 MFR 喷发通常会导致微弱的射流和停滞或失败的喷发,因此在我们的案例中很难理解大规模 CME 的产生。与以往研究的详细比较表明,MFR 相对于内部零点的诞生位置可能是决定 MFR 能否在这种特定的嵌套双零点磁系统中成功爆发的关键物理因素。
更新日期:2024-10-22
中文翻译:
嵌套式双零磁系统中热通道磁通绳的形成和喷发
日冕磁拓扑结构显著影响磁通绳 (MFR) 喷发的结果。最近报道的嵌套式双零点磁系统仍不清楚它如何影响 MFR 喷发。利用新真空太阳望远镜和太阳动力学天文台的观测结果,我们研究了 2014 年 9 月 28 日来自 NOAA 活跃区域 AR 12173 的热通道 MFR 的形成和成功喷发。我们观察到热通道 MFR 以日冕物质抛射 (CME) 的形式形成和爆发,源区的磁场是一个嵌套的双零点磁系统,其中内部磁性零点系统嵌套着外部扇脊磁系统。观测分析表明,MFR 的起源是由于内部零点的磁重连接,这是由光球层旋转运动触发的。源区持续约 26 小时的长期剪切运动可能会积累足够的能量来为喷发提供动力。由于先前的研究表明,嵌套式双零磁系统的 MFR 喷发通常会导致微弱的射流和停滞或失败的喷发,因此在我们的案例中很难理解大规模 CME 的产生。与以往研究的详细比较表明,MFR 相对于内部零点的诞生位置可能是决定 MFR 能否在这种特定的嵌套双零点磁系统中成功爆发的关键物理因素。