当前位置:
X-MOL 学术
›
Remote Sens. Environ.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
4D imaging of the volcano feeding system beneath the urban area of the Campi Flegrei caldera
Remote Sensing of Environment ( IF 11.1 ) Pub Date : 2024-10-22 , DOI: 10.1016/j.rse.2024.114480 Pietro Tizzani, José Fernández, Andrea Vitale, Joaquín Escayo, Andrea Barone, Raffaele Castaldo, Susi Pepe, Vincenzo De Novellis, Giuseppe Solaro, Antonio Pepe, Anna Tramelli, Zhongbo Hu, Sergey V. Samsonov, Isabel Vigo, Kristy F. Tiampo, Antonio G. Camacho
Remote Sensing of Environment ( IF 11.1 ) Pub Date : 2024-10-22 , DOI: 10.1016/j.rse.2024.114480 Pietro Tizzani, José Fernández, Andrea Vitale, Joaquín Escayo, Andrea Barone, Raffaele Castaldo, Susi Pepe, Vincenzo De Novellis, Giuseppe Solaro, Antonio Pepe, Anna Tramelli, Zhongbo Hu, Sergey V. Samsonov, Isabel Vigo, Kristy F. Tiampo, Antonio G. Camacho
This paper describes an approach to analyze ground deformation data collected by InSAR (Interferometric Synthetic Aperture Radar) imaging the volcano feeding system (VFS) beneath a caldera. The approach is applied to the Campi Flegrei caldera in southern Italy, a densely populated area at high risk for volcanic eruption. The method is a 4D tomographic inversion that considers a combination of 3D pressure sources and dislocations (strike-slip, dip-slip and tensile) acting simultaneously. This is in contrast to traditional methods that assume a priori geometries and type for the volcanic source. Another novelty is that we carry out a time-series analysis of multifrequency InSAR displacement data. The analysis of these multiplatform and multifrequency InSAR data from 2011 to 2022 reveals an inflating source at a depth of 3–4 km that is interpreted as a pressurized magmatic intrusion. The source broadens and migrates laterally over time, with a possible new magmatic pulse arriving in 2018–2020. The model also identifies a shallow region (at 400 m depth) that may be feeding fumaroles in the area. The analysis also reveals a zone of weakness (dip-slip) that could influence the path of rising magma. This method provides a more detailed dynamic 4 - dimensional image of the VFS than previously possible and could be used to improve hazard assessments in active volcanic areas.
中文翻译:
Campi Flegrei 火山口市区下方火山补给系统的 4D 成像
本文描述了一种分析InSAR(干涉合成孔径雷达)对火山口下方火山补给系统(VFS)成像收集的地面变形数据的方法。该方法适用于意大利南部的 Campi Flegrei 火山口,这是一个人口稠密的地区,火山喷发的风险很高。该方法是一种 4D 断层扫描反演,它考虑了 3D 压力源和位错(走滑、浸滑和拉伸)的组合同时作用。这与假设火山源的先验几何形状和类型的传统方法形成鲜明对比。另一个新颖之处在于,我们对多频 InSAR 位移数据进行了时间序列分析。对 2011 年至 2022 年的这些多平台和多频 InSAR 数据的分析揭示了 3-4 公里深度的膨胀源,该膨胀源被解释为加压岩浆侵入。随着时间的推移,该源头会扩大并横向迁移,可能会在 2018-2020 年出现新的岩浆脉冲。该模型还确定了一个浅水区(400 m 深),该区域可能在该地区为喷气孔提供水源。分析还揭示了可能影响岩浆上升路径的薄弱区域(倾滑)。这种方法提供了比以前更详细的 VFS 动态 4 维图像,可用于改进活跃火山区域的危害评估。
更新日期:2024-10-22
中文翻译:
Campi Flegrei 火山口市区下方火山补给系统的 4D 成像
本文描述了一种分析InSAR(干涉合成孔径雷达)对火山口下方火山补给系统(VFS)成像收集的地面变形数据的方法。该方法适用于意大利南部的 Campi Flegrei 火山口,这是一个人口稠密的地区,火山喷发的风险很高。该方法是一种 4D 断层扫描反演,它考虑了 3D 压力源和位错(走滑、浸滑和拉伸)的组合同时作用。这与假设火山源的先验几何形状和类型的传统方法形成鲜明对比。另一个新颖之处在于,我们对多频 InSAR 位移数据进行了时间序列分析。对 2011 年至 2022 年的这些多平台和多频 InSAR 数据的分析揭示了 3-4 公里深度的膨胀源,该膨胀源被解释为加压岩浆侵入。随着时间的推移,该源头会扩大并横向迁移,可能会在 2018-2020 年出现新的岩浆脉冲。该模型还确定了一个浅水区(400 m 深),该区域可能在该地区为喷气孔提供水源。分析还揭示了可能影响岩浆上升路径的薄弱区域(倾滑)。这种方法提供了比以前更详细的 VFS 动态 4 维图像,可用于改进活跃火山区域的危害评估。