npj Flexible Electronics ( IF 12.3 ) Pub Date : 2024-10-22 , DOI: 10.1038/s41528-024-00356-6 Jianyong Pan, Hao Kan, Zhaorui Liu, Song Gao, Enxiu Wu, Yang Li, Chunwei Zhang
Tungsten oxide (WO3)-based memristors show promising applications in neuromorphic computing. However, single-layer WO3 memristors suffer from issues such as weak memory performance and nonlinear conductance variations. In this work, a functional layer based on the hybrids of WO3−x and TiO2 is proposed for constructing flexible memristors featuring outstanding synaptic characteristics. Applying diverse electrical stimulations to the memristor enables a range of synaptic functions, elucidating its conduction mechanism through the conductive filament model. The incorporation of TiO2 not only enhances the memristor’s memory characteristics but makes its conductance more linear, symmetrical and uniform during the long-term changes. Furthermore, in view of the enhanced device performance by TiO2 doping, the potential of this device for simple behavioral simulation and processing of complex computing problems is explored. The “learning-forgetting-relearning” characteristics and device integrability are visually demonstrated. Applying the device to a convolutional neural network, the recognition accuracy of MNIST handwritten digits reaches 98.7%.
中文翻译:
灵活的 TiO2-WO3−x 混合忆阻器,具有增强的线性度和突触可塑性,可在神经形态计算中实现精确的权重调整
基于氧化钨 (WO3) 的忆阻器在神经形态计算中显示出有前途的应用。然而,单层 WO3 忆阻器存在内存性能弱和非线性电导变化等问题。在这项工作中,提出了一种基于 WO3−x 和 TiO2 杂化物的功能层,用于构建具有出色突触特性的柔性忆阻器。对忆阻器施加不同的电刺激可实现一系列突触功能,通过导电丝模型阐明其传导机制。TiO2 的加入不仅增强了忆阻器的存储特性,而且使其电导在长期变化过程中更加线性、对称和均匀。此外,鉴于 TiO2 掺杂增强了器件性能,探索了该器件在简单行为模拟和复杂计算问题处理方面的潜力。直观地展示了 “学习-遗忘-再学习” 特征和设备可集成性。将该设备应用于卷积神经网络,MNIST 手写数字的识别准确率达到 98.7%。