当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
The construction of multifunctional solid electrolyte interlayers for stabilizing Li6PS5Cl-based all-solid-state lithium metal batteries
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-10-23 , DOI: 10.1039/d4ee03289f Ya Chen, Xin Gao, Zheng Zhen, Xiao Chen, Ling Huang, Deli Zhou, Tengfei Hu, Bozhen Ren, Runjing Xu, Jiayi Chen, Xiaodong Chen, Lifeng Cui, Guoxiu Wang
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-10-23 , DOI: 10.1039/d4ee03289f Ya Chen, Xin Gao, Zheng Zhen, Xiao Chen, Ling Huang, Deli Zhou, Tengfei Hu, Bozhen Ren, Runjing Xu, Jiayi Chen, Xiaodong Chen, Lifeng Cui, Guoxiu Wang
The electrochemical performance of all-solid-state Li metal batteries (ASSLMBs) can be improved by resolving the challenges triggered by the uncontrolled growth of Li dendrites throughout the solid electrolytes (SEs). Herein, a well-defined composite of micro-Li6PS5Cl (LPSC) and nano-Li1.3Al0.3Ti1.7(PO4)3 (LATP) is designed as a LPSC–LATP interlayer sandwiched between LPSC electrolytes for ASSLMBs. This fabrication exhibits electron-blocking functionalities, which reduce the probability of reaction with Li+ ions for the formation of anode-initiated and grain boundary (GB)-initiated dendrites. More importantly, it also creates localized eliminated micro-environments of Li dendrites through the high transient reactivity between them, and the remaining cracks can be dynamically and effectively filled by decomposition products, thereby clearly suppressing Li dendrite nucleation, propagation and penetration as well as simultaneously contributing to the enhancement of battery performance and stability. With this approach, a fine-tuned LPSC–LATP (8S–2O) interlayer enables symmetrical Li/LPSC/8S–2O/LPSC/Li cells to achieve an ultra-high critical current density (CCD) of over 5 mA cm−2 at room temperature, and ultra-long-term cycling at a current density of 10 mA cm−2 for over 1600 h. Additionally, ASSLMBs employing commercial LiCoO2 cathodes can deliver exceptional durability, with an extremely high 85.6% retention of initial discharge capacity and coulombic efficiency (CE) of >99.6% after 1200 cycles at 1C (1.28 mA cm−2). These experimental batteries demonstrate the application potential of this configuration of SEs for the commercialization of ASSLMBs.
中文翻译:
用于稳定 Li6PS5Cl 基全固态锂金属电池的多功能固体电解质夹层的构建
通过解决固体电解质 (SE) 中锂枝晶不受控制生长所引发的挑战,可以提高全固态锂金属电池 (ASSLMB) 的电化学性能。在此,将微锂6PS5Cl (LPSC) 和纳米锂1.3Al0.3Ti1.7(PO4)3 (LATP) 的明确复合材料设计为夹在 LPSC 电解质之间的 LPSC-LATP 夹层,用于 ASSLMB。这种制备表现出电子阻断功能,可降低与 Li+ 离子反应形成阳极引发和晶界 (GB) 引发的枝晶的可能性。更重要的是,它还通过锂枝晶之间的高瞬态反应性创造了锂枝晶的局部消除微环境,剩余的裂纹可以通过分解产物动态有效地填充,从而明显抑制锂枝晶的成核、传播和渗透,同时有助于增强电池的性能和稳定性。通过这种方法,微调的 LPSC-LATP (8S-2O) 夹层使对称的 Li/LPSC/8S-2O/LPSC/Li 电池在室温下实现超过 5 mA cm-2 的超高临界电流密度 (CCD),并在 10 mA cm-2 的电流密度下超长期循环超过 1600 小时。此外,采用商用 LiCoO2 阴极的 ASSLMB 可以提供卓越的耐用性,具有 85.6% 的极高初始放电容量保留率和 >99 的库仑效率 (CE)。在 1C (1.28 mA cm-2) 下循环 1200 次后为 6%。这些实验电池证明了这种 SE 配置在 ASSLMB 商业化中的应用潜力。
更新日期:2024-10-23
中文翻译:
用于稳定 Li6PS5Cl 基全固态锂金属电池的多功能固体电解质夹层的构建
通过解决固体电解质 (SE) 中锂枝晶不受控制生长所引发的挑战,可以提高全固态锂金属电池 (ASSLMB) 的电化学性能。在此,将微锂6PS5Cl (LPSC) 和纳米锂1.3Al0.3Ti1.7(PO4)3 (LATP) 的明确复合材料设计为夹在 LPSC 电解质之间的 LPSC-LATP 夹层,用于 ASSLMB。这种制备表现出电子阻断功能,可降低与 Li+ 离子反应形成阳极引发和晶界 (GB) 引发的枝晶的可能性。更重要的是,它还通过锂枝晶之间的高瞬态反应性创造了锂枝晶的局部消除微环境,剩余的裂纹可以通过分解产物动态有效地填充,从而明显抑制锂枝晶的成核、传播和渗透,同时有助于增强电池的性能和稳定性。通过这种方法,微调的 LPSC-LATP (8S-2O) 夹层使对称的 Li/LPSC/8S-2O/LPSC/Li 电池在室温下实现超过 5 mA cm-2 的超高临界电流密度 (CCD),并在 10 mA cm-2 的电流密度下超长期循环超过 1600 小时。此外,采用商用 LiCoO2 阴极的 ASSLMB 可以提供卓越的耐用性,具有 85.6% 的极高初始放电容量保留率和 >99 的库仑效率 (CE)。在 1C (1.28 mA cm-2) 下循环 1200 次后为 6%。这些实验电池证明了这种 SE 配置在 ASSLMB 商业化中的应用潜力。