当前位置: X-MOL 学术Algebra Number Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Moduli of linear slices of high degree smooth hypersurfaces
Algebra & Number Theory ( IF 0.9 ) Pub Date : 2024-10-21 , DOI: 10.2140/ant.2024.18.2133
Anand Patel, Eric Riedl, Dennis Tseng

We study the variation of linear sections of hypersurfaces in n. We completely classify all plane curves, necessarily singular, whose line sections do not vary maximally in moduli. In higher dimensions, we prove that the family of hyperplane sections of any smooth degree d hypersurface in n varies maximally for d n + 3. In the process, we generalize the classical Grauert–Mülich theorem about lines in projective space, both to k-planes in projective space and to free rational curves on arbitrary varieties.



中文翻译:


高度光滑超曲面的线性切片模量



我们研究了 d 超表面线性截面的变化。 n 我们对所有平面曲线进行完全分类,必然是奇异的,其线段的模量变化不大。在更高的维度上,我们证明了任何光滑度 d 超曲面的超平面截面族 in n 的变化最大。 d n + 3 在此过程中,我们将关于投影空间中的线的经典 Grauert-Mülich 定理推广到 k 投影空间中的 -平面和任意变体上的自由有理曲线。

更新日期:2024-10-22
down
wechat
bug