当前位置: X-MOL 学术Plant Biotech. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
SRS: An intelligent and robust approach for confirmation of plant transcription factor–DNA interactions
Plant Biotechnology Journal ( IF 10.1 ) Pub Date : 2024-10-22 , DOI: 10.1111/pbi.14488
Qi Zhou, Yulu Ye, Haiyan He, Zhigang Meng, Tao Zhou, Jingtao Zhang, Yameng Li, Jilong Zhang, Zhaoyi Liao, Yuan Wang, Sandui Guo, Chengzhen Liang

Transcription factors (TFs), representing 5%–8% of eukaryotic nuclear genome, bind specific DNA sequences like promoters to regulate transcription (Lambert et al., 2018). Identifying these sequences is vital for understanding TF functions. Techniques such as chromatin immunoprecipitation sequencing (ChIP-Seq), electrophoretic mobility shift assay (EMSA), yeast one-hybrid (Y1H) assay, dual-luciferase reporter LUC/REN assay, and β-glucuronidase (GUS) reporter are used to validate TF–promoter interactions but require extensive instrumentation and chemicals (Abid et al., 2022; Park, 2009). An alternative, the RUBY/eYGFPuv assay, uses modified plant leaf colour as a visible, cost-effective method for studying DNA–protein interaction (Sun et al., 2023). Advances in genomics, including RNA sequencing and ChIP-Seq, underscore the need for efficient, reliable visual detection systems to map TF binding sites, crucial for elucidating their regulatory roles and broader biological impacts.

To develop a visual reporter for TF–DNA interactions, we targeted genes influencing leaf colour by modulating chlorophyll (Chl) degradation. The Stay-Green1 (SGR1) gene, crucial for Chl breakdown during senescence, encodes magnesium dechelatase. Mutations in SGR1 result in a stay-green phenotype, while overexpression leads to yellowing (Shimoda et al., 2016). We chose SGR1 from 32 candidates, divided into three subgroups, and cloned SGR1 genes from Arabidopsis thaliana (AtSGR1), Oryza sativa (OsSGR1), and two from Ginkgo biloba (GbSGR1 and GbSGR1L) (Figure S1). Using the Cauliflower Mosaic Virus 35S promoter, we expressed these genes in Nicotiana benthamiana leaves via Agrobacterium tumefaciens-mediated transformation (Figure S2). All transformed areas exhibited accelerated yellowing, with AtSGR1 exhibiting the most rapid and significant Chl degradation, demonstrating its potential as a TF–DNA interaction reporter (Figure 1a–c). Additionally, enhancements including a Kozak consensus sequence for improved translation, darkness to stimulate yellowing, and maintaining temperatures between 22 and 25°C significantly boosted Chl degradation (Figure S3).

Details are in the caption following the image
Figure 1
Open in figure viewerPowerPoint
Development and Utilization of the SRS System. (a) Phenotypic variations in N. benthamiana leaves post-injection with different SGR1 genes. (b) Dynamic changes in Chl content in SGR1-injected leaf spots. Mean ± SD (n = 10). (c) Expression levels of AtSGR1 (yellow), OsSGR1 (pink), GbSGR1 (blue), and GbSGR1L (grey) in injected spots. (d) Design and workflow of the SMGY model. (e–h) Phenotypes of detached wild-type and six NbSGR1 gene-edited N. benthamiana leaves 10 days after dark treatment. (i–p) Dynamic phenotypic in N. benthamiana leaves injected with pFHY1::SGR1-p35S::FAR1 over time. (q) Changes in Chl content in injected areas. (r–s) Expression of FAR1 and SGR1 in the injected spots. (t) Protein levels of SGR1 in the injected spots. NbActin (NbACT) was used for protein loading control. Scale Bar, 0.5 cm.

To efficiently monitor Chl level changes, we developed the Smart Model for tracking Chl change from Green to Yellow (SMGY). This model utilizes a second-order polynomial regression and a colour difference correction matrix, calibrated against a standard colour chart to minimize image colour variations. We integrated a remote diagnosis system via the WeChat Mini Program for on-site, real-time, non-destructive Chl detection in plant leaves (Figure 1d). To predict SPAD values from images, we analysed 14 features with significant correlations (r > 0.5; Figure S4a; Table S1) and used a stacking ensemble of five machine learning models (Figure S4b; Table S2). After 100 iterations, the model achieved an R2 of 0.85, RMSE of 2.4, and NRMSE of 12.24% (Figure S4c–e; Table S3). The SMGY model offers a user-friendly, efficient, and non-destructive method for accurate Chl quantification, facilitating rapid monitoring of Chl fluctuations while preserving plant integrity. To address potential false positives from NbSGR1 gene activation in N. benthamiana, we used CRISPR/Cas9 technology to knock out its six SGR1 homologous genes, distributed across different chromosomes (Figure S5a). We designed a CRISPR-Cas9 construct with 12 sgRNAs under the AtU6-26 promoter, which was introduced into N. benthamiana (Figure S5b). Genetic analysis revealed a homozygous plant, CR19, with all six NbSGR1 genes edited (Figure S6a). CR19 showed delayed leaf yellowing and reduced Chl degradation under dark conditions, making it ideal as a host for subsequent SRS research (Figures 1e–h and S6b–d).

To increase the likelihood of TFs and target DNA interacting within the same cell, we developed the pTF-SGR1 plasmid featuring two independent expression cassettes: p35S::TF and pY::SGR1, with multiple cloning sites for ease of molecular manipulation (Figure S7). We evaluated this system using the FAR1 TF and the FHY1 promoter, which regulates the nuclear accumulation of phytochrome A. Interactions were confirmed via ChIP-PCR, Y1H, and EMSA (Lin et al., 2007). We constructed pFHY1::SGR1-p35S::FAR1, infiltrated N. benthamiana leaves with it, and observed significant colour shifts from green to yellow, indicative of interaction, while controls showed minimal changes (Figures 1i–p and S8). Elevated expression of SGR1 in the presence of FAR1 and the FHY1 promoter was confirmed (Figure 1q–t). Specificity tests with a mutated FAR1 gene and a non-interacting OsTB1 promoter validated the system's sensitivity and specificity (Figure S9a,b). Negative controls included vectors with either the FAR1 gene or the FHY1 promoter alone, and an empty vector, with minimal changes observed in controls (Figure S9c–f).

To assess the SRS's ability to characterize interactions between TFs and their target promoters across diverse functions, we tested three TF-promoter pairs (Figure S10). For example, the TIG1 TF from the TCP family, which activates SAUR39 and influences rice tiller angles (Zhang et al., 2019), was tested by delivering the pSAUR39::SGR1-p35S::TIG1 vector into N. benthamiana leaves. This resulted in significant colour changes and increased SGR1 transcript levels, unlike controls (Figures S10, S11a–e and S12a,b). We also examined the interaction between MYB29 TF and the SUR1 promoter (Ma et al., 2013), observing expected colour changes with the pSUR1::SGR1-p35S::MYB29 construct (Figures S10, S11f–j and S12c,d). Additionally, the interaction between the avrBs3 protein from Xanthomonas campestris and the pepper Bs3 promoter (Römer et al., 2007) was confirmed through noticeable colour changes upon co-expression (Figures S10, S11k–o and S12e,f). Furthermore, we demonstrated the feasibility of the SRS system in validating the interaction between the senescence-associated TF AtNAP (Zhang and Gan, 2012) and its downstream target gene, the SAG113 promoter (Figure S13). These experiments demonstrate the SRS's robustness and reliability in verifying specific plant TF–DNA interactions.

We further tested the SRS in various plants beyond N. benthamiana, confirming its effectiveness in species like rapeseed and different types of lettuce (Figure S14). However, some plants showed unexpected phenotypes, indicating the need for future optimization of experimental conditions.



中文翻译:


SRS:一种用于确认植物转录因子-DNA 相互作用的智能且可靠的方法



占真核生物核基因组 5%-8% 的转录因子 (TFs) 结合启动子等特定 DNA 序列以调节转录(Lambert等 人2018 年)。识别这些序列对于理解 TF 功能至关重要。染色质免疫沉淀测序 (ChIP-Seq)、电泳迁移率变化测定 (EMSA)、酵母单杂交 (Y1H) 测定、双荧光素酶报告基因 LUC/任 测定和 β-葡萄糖醛酸酶 (GUS) 报告基因等技术用于验证 TF-启动子相互作用,但需要大量的仪器和化学品(Abid等 人2022 年;Park,2009 年)。另一种方法是 RUBY/eYGFPuv 测定法,它使用修饰的植物叶色作为研究 DNA-蛋白质相互作用的可见、经济高效的方法(Sun等人 2023 年)。基因组学的进步,包括 RNA 测序和 ChIP-Seq,强调了对高效、可靠的视觉检测系统的需求,以绘制 TF 结合位点,这对于阐明其调节作用和更广泛的生物学影响至关重要。


为了开发 TF-DNA 相互作用的视觉报告基因,我们通过调节叶绿素 (Chl) 降解来靶向影响叶色的基因。Stay-Green1SGR1) 基因对衰老过程中的 Chl 分解至关重要,它编码镁脱螯酶。SGR1 突变导致保持绿色的表型,而过表达导致黄化(Shimoda等 人2016 年)。我们从 32 个候选者中选择了 SGR1,分为三个亚组,并从拟南芥AtSGR1)、水稻OsSGR1) 和银叶 (GbSGR1GbSGR1L) 中克隆了 SGR1 基因(图 S1)。使用花椰菜花叶病毒 35S 启动子,我们通过根癌农杆菌介导的转化在本氏烟草叶中表达这些基因(图 S2)。所有转化区域都表现出加速黄变,其中 AtSGR1 表现出最快速和最显着的 Chl 降解,证明了其作为 TF-DNA 相互作用报告基因的潜力(图 1a-c)。此外,包括用于改进翻译的 Kozak 共有序列、刺激黄变的黑暗以及将温度保持在 22 至 25°C 之间的增强功能显着促进了 Chl 降解(图 S3)。

Details are in the caption following the image
 图 1

在图窗查看器PowerPoint 中打开

SRS 系统的开发和利用。(a) 注射不同 SGR1 基因后本氏烟草叶片的表型变异。(b) SGR1 注射叶斑病中 Chl 含量的动态变化。SD ±平均值 (n = 10)。(c) 注射点中 AtSGR1 (黄色)、OsSGR1 (粉红色)、GbSGR1 (蓝色) 和 GbSGR1L (灰色) 的表达水平。(d) SMGY 模型的设计和工作流程。(e-h)黑暗处理后 10 天分离野生型和 6 个 NbSGR1 基因编辑的本氏烟草叶片的表型。(I-P)随着时间的推移,注射 pFHY1::SGR1-p35S::FAR1 的本氏烟草叶片中的动态表型。(q) 注射区域 Chl 含量的变化。(r-s)FAR1SGR1 在注射点中的表达。(t) 注射点中 SGR1 的蛋白质水平。NbActin (NbACT) 用于蛋白质负载控制。比例尺,0.5 厘米。


为了有效地监测 Chl 水平变化,我们开发了智能模型来跟踪 Chl 从绿色到黄色 (SMGY) 的变化。该模型利用二阶多项式回归和色差校正矩阵,根据标准色卡进行校准,以最大限度地减少图像颜色变化。我们通过微信小程序集成了一个远程诊断系统,用于现场、实时、无损地检测植物叶片中的 Chl (图 1d)。为了从图像中预测 SPAD 值,我们分析了 14 个具有显著相关性的特征 (r > 0.5;图 S4a;表 S1),并使用了 5 个机器学习模型的堆叠集成(图 S4b;表 S2)。经过 100 次迭代,该模型实现了 0.85 的 R2、2.4 的 RMSE 和 12.24% 的 NRMSE(图 S4c-e;表 S3)。SMGY 模型提供了一种用户友好、高效且无损的 Chl 准确定量方法,有助于快速监测 Chl 波动,同时保持植物完整性。为了解决本氏烟草NbSGR1 基因激活的潜在假阳性问题,我们使用 CRISPR/Cas9 技术敲除分布在不同染色体上的六个 SGR1 同源基因(图 S5a)。我们设计了一个在 AtU6-26 启动子下具有 12 个 sgRNA 的 CRISPR-Cas9 构建体,该构建体被引入本氏烟草中(图 S5b)。遗传分析揭示了一种纯合植物 CR19,所有六个 NbSGR1 基因都被编辑了(图 S6a)。CR19 在黑暗条件下显示延迟叶片黄化并减少 Chl 降解,使其成为后续 SRS 研究的理想宿主(图 1e-h 和 S6b-d)。


为了增加 TF 和靶 DNA 在同一细胞内相互作用的可能性,我们开发了具有两个独立表达盒的 pTF-SGR1 质粒:p35S::TFpY::SGR1,具有多个克隆位点,便于分子操作(图 S7)。我们使用 FAR1 TF 和 FHY1 启动子评估了该系统,它们调节植物色素 A 的核积累。通过 ChIP-PCR、Y1H 和 EMSA 证实了相互作用(Lin et al., 2007)。我们构建了 pFHY1::SGR1-p35S::FAR1,用它渗透了本氏烟草的叶子,并观察到从绿色到黄色的显着颜色变化,表明相互作用,而对照则显示出最小的变化(图 1i-p 和 S8)。证实在 FAR1FHY1 启动子存在下 SGR1 表达升高(图 1q-t)。使用突变的 FAR1 基因和非相互作用的 OsTB1 启动子进行的特异性测试验证了该系统的敏感性和特异性(图 S9a,b)。阴性对照包括单独具有 FAR1 基因或 FHY1 启动子的载体,以及在对照中观察到最小变化的空载体(图 S9c-f)。


为了评估 SRS 表征 TFs 与其跨不同功能的目标启动子之间相互作用的能力,我们测试了三个 TF 启动子对(图 S10)。例如,来自 TCP 家族的 TIG1 TF 激活 SAUR39 并影响水稻分蘖角度(Zhang等人 2019 年),通过将 pSAUR39::SGR1-p35S::TIG1 载体递送到本氏猪笼草叶中来测试。与对照组不同,这导致显着的颜色变化和 SGR1 转录水平增加(图 S10、S11a-e 和 S12a、b)。我们还检查了MYB29 TF和SUR1启动子之间的相互作用(马等 人2013),观察到pSUR1SGR1-p35S ::MYB29构建体的预期颜色变化(图S10,S11f-j和S12c,d)。此外,来自油菜黄单胞菌的 avrBs3 蛋白与辣椒 Bs3 启动子之间的相互作用(Römer等 人2007 年)通过共表达时的明显颜色变化得到证实(图 S10、S11k-o 和 S12e、f)。此外,我们证明了 SRS 系统在验证衰老相关 TF AtNAP (Zhang 和 Gan,2012) 与其下游靶基因 SAG113 启动子之间相互作用的可行性 (图 S13)。这些实验证明了 SRS 在验证特定植物 TF-DNA 相互作用方面的稳健性和可靠性。


我们进一步在本氏烟草以外的各种植物中测试了 SRS,证实了它对油菜籽和不同类型生菜等物种的有效性(图 S14)。然而,一些植物显示出意想不到的表型,表明未来需要优化实验条件。

更新日期:2024-10-22
down
wechat
bug