当前位置: X-MOL 学术J. Chem. Inf. Model. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multirelational Hypergraph Representation Learning for Predicting circRNA-miRNA Associations
Journal of Chemical Information and Modeling ( IF 5.6 ) Pub Date : 2024-10-21 , DOI: 10.1021/acs.jcim.4c01436
Wenjing Yin, Shudong Wang, Yuanyuan Zhang, Sibo Qiao, Wenhao Wu, Hengxiao Li

One of the principal functions of circular RNA (circRNA) is to participate in gene regulation by sponging microRNAs (miRNAs). Using accumulated circRNA-miRNA associations (CMAs) to construct computational models for predicting potential associations provides a crucial tool for accelerating the validation of reliable associations through traditional experiments. Nevertheless, the current prediction models are constrained in their capacity to represent the higher-order relationships of CMAs and thus require further enhancement in terms of their predictive efficacy. In order to address this issue, we propose a new model based on multirelational hypergraph representation learning (MRHRL). This model employs hypergraphs to capture various higher-order relationships among RNAs and aggregates complementary information through a view attention mechanism. Furthermore, MRHRL introduces a hyperedge-level reconstruction task, jointly optimizing the prediction and reconstruction tasks within a unified framework to uncover potential information, thereby enhancing the model’s predictive and generalization capabilities. Experiments conducted on three real-world data sets demonstrate that MRHRL achieves satisfactory results in CMAs prediction, significantly outperforming existing prediction models.

中文翻译:


用于预测 circRNA-miRNA 关联的多关系超图表示学习



环状 RNA (circRNA) 的主要功能之一是通过海绵 microRNA (miRNA) 参与基因调控。使用累积的 circRNA-miRNA 关联 (CMA) 构建用于预测潜在关联的计算模型,为通过传统实验加速验证可靠关联提供了重要工具。然而,目前的预测模型在表示 CMA 的高阶关系的能力方面受到限制,因此需要进一步增强其预测效能。为了解决这个问题,我们提出了一种基于多关系超图表示学习 (MRHRL) 的新模型。该模型采用超图来捕获 RNA 之间的各种高阶关系,并通过视图注意力机制聚合互补信息。此外,MRHRL 引入了超边缘级别的重建任务,在统一的框架内共同优化预测和重建任务,以发现潜在信息,从而增强模型的预测和泛化能力。在三个真实数据集上进行的实验表明,MRHRL 在 CMA 预测方面取得了令人满意的结果,明显优于现有的预测模型。
更新日期:2024-10-21
down
wechat
bug