Advances in Applied Clifford Algebras ( IF 1.1 ) Pub Date : 2024-10-19 , DOI: 10.1007/s00006-024-01358-3 André L. G. Mandolesi
The theory of contractions of multivectors, and star duality, was reorganized in a previous article, and here we present some applications. First, we study inner and outer spaces associated to a general multivector M via the equations \(v \wedge M = 0\) and \(v \mathbin {\lrcorner }M=0\). They are then used to analyze special decompositions, factorizations and ‘carvings’ of M, to define generalized grades, and to obtain new simplicity criteria, including a reduced set of Plücker-like relations. We also discuss how contractions are related to supersymmetry, and give formulas for supercommutators of multi-fermion creation and annihilation operators.
中文翻译:
重新审视多向量收缩,第 II 部分
多向量收缩理论和星对偶性在上一篇文章中进行了重新组织,在这里我们介绍一些应用。首先,我们通过方程 \(v \wedge M = 0\) 和 \(v \mathbin {\lrcorner }M=0\) 研究与一般多向量 M 相关的内部和外部空间。然后,它们用于分析 M 的特殊分解、因式分解和“雕刻”,定义广义等级,并获得新的简单性标准,包括一组简化的 Plücker 式关系。我们还讨论了收缩与超对称性的关系,并给出了多费米子产生和湮灭算子的超换向子的公式。