当前位置: X-MOL 学术npj Digit. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biologically informed deep neural networks provide quantitative assessment of intratumoral heterogeneity in post treatment glioblastoma
npj Digital Medicine ( IF 12.4 ) Pub Date : 2024-10-19 , DOI: 10.1038/s41746-024-01277-4
Hairong Wang, Michael G. Argenziano, Hyunsoo Yoon, Deborah Boyett, Akshay Save, Petros Petridis, William Savage, Pamela Jackson, Andrea Hawkins-Daarud, Nhan Tran, Leland Hu, Kyle W. Singleton, Lisa Paulson, Osama Al Dalahmah, Jeffrey N. Bruce, Jack Grinband, Kristin R. Swanson, Peter Canoll, Jing Li

Intratumoral heterogeneity poses a significant challenge to the diagnosis and treatment of recurrent glioblastoma. This study addresses the need for non-invasive approaches to map heterogeneous landscape of histopathological alterations throughout the entire lesion for each patient. We developed BioNet, a biologically-informed neural network, to predict regional distributions of two primary tissue-specific gene modules: proliferating tumor (Pro) and reactive/inflammatory cells (Inf). BioNet significantly outperforms existing methods (p < 2e-26). In cross-validation, BioNet achieved AUCs of 0.80 (Pro) and 0.81 (Inf), with accuracies of 80% and 75%, respectively. In blind tests, BioNet achieved AUCs of 0.80 (Pro) and 0.76 (Inf), with accuracies of 81% and 74%. Competing methods had AUCs lower or around 0.6 and accuracies lower or around 70%. BioNet’s voxel-level prediction maps reveal intratumoral heterogeneity, potentially improving biopsy targeting and treatment evaluation. This non-invasive approach facilitates regular monitoring and timely therapeutic adjustments, highlighting the role of ML in precision medicine.



中文翻译:


生物学知情的深度神经网络提供治疗后胶质母细胞瘤内异质性的定量评估



瘤内异质性对复发性胶质母细胞瘤的诊断和治疗构成了重大挑战。本研究解决了非侵入性方法的需求,以绘制每位患者整个病灶中组织病理学改变的异质景观。我们开发了 BioNet,一种生物学信息神经网络,用于预测两个主要组织特异性基因模块的区域分布:增殖肿瘤 (Pro) 和反应性/炎症细胞 (Inf)。BioNet 的性能明显优于现有方法 (p < 2e-26)。在交叉验证中,BioNet 实现了 0.80 (Pro) 和 0.81 (Inf) 的 AUC,准确率分别为 80% 和 75%。在盲测中,BioNet 的 AUC 分别为 0.80 (Pro) 和 0.76 (Inf),准确率分别为 81% 和 74%。竞争方法的 AUC 较低或约为 0.6,准确度较低或约为 70%。BioNet 的体素级预测图揭示了肿瘤内异质性,有可能改进活检靶向和治疗评估。这种非侵入性方法有助于定期监测和及时调整治疗,突出了 ML 在精准医疗中的作用。

更新日期:2024-10-20
down
wechat
bug