当前位置: X-MOL 学术Ind. Crops Prod. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spent mushroom substrate of Ganoderma lucidum developed nanocatalyst (CSA/BaO@K2CO3) for efficient biodiesel synthesis from blended oil feedstock
Industrial Crops and Products ( IF 5.6 ) Pub Date : 2024-10-20 , DOI: 10.1016/j.indcrop.2024.119871
Sujata Brahma, Raju Ali, Papia Das, Sharmistha Brahma Kaur, Rebecca Daimari, Jonali Owary, Sandeep Das, Bipul Das, Sanjay Basumatary

The dietary and biological advantages of mushrooms are driving a global boom in the mushroom industry. The widespread production of mushrooms corresponds to disposal challenge, generating a significant volume of biowaste known as spent mushroom substrate. Their use as a catalyst can assist in lowering the expense of producing catalyst and the issue related to their disposal. Hence, the current study focused on developing a nanocatalyst for biodiesel synthesis from a blend of eight different types of oil. The catalyst was synthesized by using spent mushroom substrate (sawdust) of Ganoderma lucidum as the foundation of the catalyst, which was impregnated by BaO and K2CO3 via the wet-impregnation method followed by calcination. The developed nanocatalyst CSA/BaO@K2CO3 (CSA, calcined spent substrate ash) was characterized via various sophisticated methods like XRD (X-ray Diffraction), BET (Brunauer-Emmett-Teller), FT-IR (Fourier Transform Infrared Spectroscopy), FESEM (Field Emission Scanning Electron Microscopy) - EDX (Energy Dispersive Spectroscopy), XPS (X-ray photoelectron spectroscopy), HRTEM (High Resolution Transmission Electron Microscopy), and SAED (Selected Area Electron Diffraction). The HRTEM data showed that the average particle size of CSA/BaO@K2CO3 was 14.368 ± 0.262 nm, which confirmed it as a nanocatalyst. The synthesized catalyst’s catalytic activity was investigated for the transesterification of the blended oil (BO), where the influence of different optimum parameters was investigated. The catalyst consisted of a BET surface area of 16.441 m2 g−1 and resulted in the highest biodiesel yield of 94.36 ± 0.29 % under the optimized reaction conditions of 10 wt% of catalyst load, 9:1 of methanol to oil molar ratio (MTOMR), 65 ℃ of reaction temperature, and 34.67 ± 0.58 min of reaction duration. The biodiesel conversion under the optimized condition was also determined and found to be 95.85 %. The conversion of biodiesel was confirmed using spectroscopic techniques. The reusability test was carried out and found that the catalyst was reusable for up to three cycles. The energy of activation for transesterification using the synthesized catalyst was evaluated to be 83.55 kJ/mol.

中文翻译:


灵芝的废蘑菇底物开发了纳米催化剂 (CSA/BaO@K2CO3),用于从混合油原料中高效合成生物柴油



蘑菇的膳食和生物学优势正在推动全球蘑菇行业的繁荣。蘑菇的广泛生产与处置挑战相对应,产生了大量被称为废蘑菇基质的生物废物。将它们用作催化剂有助于降低生产催化剂的费用以及与它们处理相关的问题。因此,目前的研究重点是开发一种用于从八种不同类型油的混合物合成生物柴油的纳米催化剂。以灵芝的废蘑菇基质(锯末)为催化剂基础,采用湿浸法用 BaO 和 K2CO3 浸渍,然后煅烧,合成催化剂。开发的纳米催化剂 CSA/BaO@K2CO3(CSA,煅烧废底灰)通过各种复杂的方法进行了表征,如 XRD(X 射线衍射)、BET (Brunauer-Emmett-Teller)、FT-IR(傅里叶变换红外光谱)、FESEM(场发射扫描电子显微镜)- EDX(能量色散光谱)、XPS(X 射线光电子能谱)、HRTEM(高分辨率透射电子显微镜)和 SAED(选定面积电子衍射)。HRTEM 数据显示,CSA/BaO@K2CO3 的平均粒径为 14.368 ± 0.262 nm,证实了其为纳米催化剂。研究了合成催化剂对混合油 (BO) 酯交换反应的催化活性,其中研究了不同最佳参数的影响。催化剂的 BET 表面积为 16.441 m2 g-1,生物柴油收率最高,为 94.36 ± 0。在催化剂负载量为 10 wt%、甲醇与油摩尔比 (MTOMR) 为 9:1、反应温度为 65 °C、反应持续时间为 34.67 ± 0.58 min 的优化反应条件下,反应值为 29%。还确定了优化条件下的生物柴油转化率,发现为 95.85%。使用光谱技术确认生物柴油的转化。进行了可重用性测试,发现催化剂最多可重复使用三个循环。使用合成的催化剂进行酯交换反应的活化能为 83.55 kJ/mol。
更新日期:2024-10-20
down
wechat
bug