当前位置:
X-MOL 学术
›
Cement Concrete Comp.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synergistic effects of superplasticizers and biopolymer-based viscosity-modifying admixtures on the rheology of cement-based systems
Cement and Concrete Composites ( IF 10.8 ) Pub Date : 2024-10-18 , DOI: 10.1016/j.cemconcomp.2024.105807 J.V. González-Aviña, Masoud Hosseinpoor, Ammar Yahia, A. Durán-Herrera
Cement and Concrete Composites ( IF 10.8 ) Pub Date : 2024-10-18 , DOI: 10.1016/j.cemconcomp.2024.105807 J.V. González-Aviña, Masoud Hosseinpoor, Ammar Yahia, A. Durán-Herrera
The study investigated the synergistic effects of combining superplasticizers with biopolymer-derived viscosity-modifying admixtures (VMAs) to enhance the performance of cement-based systems. Superplasticizers, including polycarboxylate ethers (PCE) and polynaphthalene sulfonates (PNS), were combined with VMAs derived from anionic (welan, tragacanth, and almond gums, and giant kelp extract) and non-ionic (guar and locust bean gums) biopolymers. Performance analysis methods included: (1) assessment of elasticity and structural build-up, (2) evaluation of viscosity, yield stress, and stability, and (3) analysis of hydration kinetics and development of compressive strength. Anionic biopolymers, such as welan gum and giant kelp extract, formed strong elastic flocculated networks, while tragacanth and almond gums led to networks with rapid rigidification. These biopolymer-based mixtures exhibited high stability against forced bleeding due to their superior viscoplastic properties. Among non-ionic biopolymers, guar gum systems resulted in higher visco-elastoplastic properties compared to locust bean gum systems. The hydration process and compressive strength development were significantly influenced by the type of VMA and dosage, as well as the type of superplasticizer used.
中文翻译:
高效减水剂和生物聚合物基粘度调节剂对水泥基体系流变性的协同作用
该研究调查了高效减水剂与生物聚合物衍生的粘度调节剂外加剂 (VMA) 相结合以提高水泥基体系性能的协同效应。高效减水剂,包括聚羧酸醚 (PCE) 和聚萘磺酸盐 (PNS),与来自阴离子(韦兰、黄蓍胶和杏仁胶,以及巨型海带提取物)和非离子(瓜尔豆胶和刺槐豆胶)生物聚合物衍生的 VMA 相结合。性能分析方法包括:(1) 弹性和结构堆积评估,(2) 粘度、屈服应力和稳定性评估,以及 (3) 水化动力学和抗压强度发展分析。阴离子生物聚合物,如韦兰胶和巨型海带提取物,形成强弹性絮凝网络,而黄蓍胶和杏仁胶导致快速刚性化的网络。这些基于生物聚合物的混合物由于其卓越的粘塑性特性而表现出对强制渗出的高稳定性。在非离子生物聚合物中,与刺槐豆胶系统相比,瓜尔豆胶系统具有更高的粘弹塑性。水化过程和抗压强度的发展受到 VMA 类型和剂量以及所用高效减水剂类型的显著影响。
更新日期:2024-10-18
中文翻译:
高效减水剂和生物聚合物基粘度调节剂对水泥基体系流变性的协同作用
该研究调查了高效减水剂与生物聚合物衍生的粘度调节剂外加剂 (VMA) 相结合以提高水泥基体系性能的协同效应。高效减水剂,包括聚羧酸醚 (PCE) 和聚萘磺酸盐 (PNS),与来自阴离子(韦兰、黄蓍胶和杏仁胶,以及巨型海带提取物)和非离子(瓜尔豆胶和刺槐豆胶)生物聚合物衍生的 VMA 相结合。性能分析方法包括:(1) 弹性和结构堆积评估,(2) 粘度、屈服应力和稳定性评估,以及 (3) 水化动力学和抗压强度发展分析。阴离子生物聚合物,如韦兰胶和巨型海带提取物,形成强弹性絮凝网络,而黄蓍胶和杏仁胶导致快速刚性化的网络。这些基于生物聚合物的混合物由于其卓越的粘塑性特性而表现出对强制渗出的高稳定性。在非离子生物聚合物中,与刺槐豆胶系统相比,瓜尔豆胶系统具有更高的粘弹塑性。水化过程和抗压强度的发展受到 VMA 类型和剂量以及所用高效减水剂类型的显著影响。