Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synergistic regulation of g-C3N4 band structure by phosphorus and sodium doping to enhance photocatalytic hydrogen peroxide production efficiency
Journal of Catalysis ( IF 6.5 ) Pub Date : 2024-10-18 , DOI: 10.1016/j.jcat.2024.115807 Yuting Wang, Mengxiang Wang, Xuya Zhang, Xinru Pan, Yongpeng Cui, Daoqing Liu, Yajun Wang, Wenqing Yao
Journal of Catalysis ( IF 6.5 ) Pub Date : 2024-10-18 , DOI: 10.1016/j.jcat.2024.115807 Yuting Wang, Mengxiang Wang, Xuya Zhang, Xinru Pan, Yongpeng Cui, Daoqing Liu, Yajun Wang, Wenqing Yao
In addressing the industrial need for a simple, equipment-minimal, and non-toxic method of in-situ hydrogen peroxide (H2 O2 ) production, this paper presents a cost-effective, environmentally friendly photocatalyst. Our design strategy focuses on the dual-element doping of phosphorus and sodium into graphitic carbon nitride (g-C3 N4 ), chosen to synergistically enhance photocatalytic performance. This approach yields a notable H2 O2 production concentration of 3001.64 μmol·g−1 ·L-1 within 100 min, using isopropanol as a sacrificial agent, which was 61-fold increase compared to bulk g-C3 N4 . Density Functional Theory (DFT) calculations were performed to elucidate the alterations in the band structure of the catalyst induced by dual-element doping, which consequentially engendered an asymmetric intrinsic electric field. Additionally, oxygen’s transition state affinity due to phosphorus doping was also investigated to reveal the mechanisms of synergistic catalysis. This development contributes to meeting industrial demands for pollutant degradation via Fenton processes and presents a sustainable alternative to traditional H2 O2 production methods.
中文翻译:
磷和钠掺杂协同调控 g-C3N4 能带结构以提高光催化过氧化氢生产效率
为了满足对简单、设备最少且无毒的原位过氧化氢 (H2O2) 生产方法的工业需求,本文提出了一种经济高效、环保的光催化剂。我们的设计策略侧重于将磷和钠的双元素掺杂成石墨氮化碳 (g-C3N4),以协同增强光催化性能。这种方法产生了显著的 H2O2 生成浓度,为 3001.64 μmol·g−1·L-1 在 100 分钟内,使用异丙醇作为牺牲剂,与散装 g-C3N4 相比增加了 61 倍。进行了密度泛函理论 (DFT) 计算,以阐明双元素掺杂引起的催化剂能带结构的变化,从而产生不对称的本征电场。此外,还研究了由于磷掺杂引起的氧的过渡态亲和力,以揭示协同催化的机制。这一发展有助于满足工业对通过 Fenton 工艺降解污染物的需求,并为传统的 H2O2 生产方法提供了一种可持续的替代方案。
更新日期:2024-10-18
中文翻译:
磷和钠掺杂协同调控 g-C3N4 能带结构以提高光催化过氧化氢生产效率
为了满足对简单、设备最少且无毒的原位过氧化氢 (H2O2) 生产方法的工业需求,本文提出了一种经济高效、环保的光催化剂。我们的设计策略侧重于将磷和钠的双元素掺杂成石墨氮化碳 (g-C3N4),以协同增强光催化性能。这种方法产生了显著的 H2O2 生成浓度,为 3001.64 μmol·g−1·L-1 在 100 分钟内,使用异丙醇作为牺牲剂,与散装 g-C3N4 相比增加了 61 倍。进行了密度泛函理论 (DFT) 计算,以阐明双元素掺杂引起的催化剂能带结构的变化,从而产生不对称的本征电场。此外,还研究了由于磷掺杂引起的氧的过渡态亲和力,以揭示协同催化的机制。这一发展有助于满足工业对通过 Fenton 工艺降解污染物的需求,并为传统的 H2O2 生产方法提供了一种可持续的替代方案。