Nature Reviews Materials ( IF 79.8 ) Pub Date : 2024-10-18 , DOI: 10.1038/s41578-024-00731-9 Dhiren K. Pradhan, David C. Moore, A. Matt Francis, Jacob Kupernik, W. Joshua Kennedy, Nicholas R. Glavin, Roy H. Olsson, Deep Jariwala
Silicon microelectronics, consisting of complementary metal–oxide–semiconductor technology, have changed nearly all aspects of human life from communication to transportation, entertainment and health care. Despite their widespread and mainstream use, current silicon-based devices are unreliable at temperatures exceeding 125 °C. The emergent technological frontiers of space exploration, geothermal energy harvesting, nuclear energy, unmanned avionic systems and autonomous driving will rely on control systems, sensors and communication devices that operate at temperatures as high as 500 °C and beyond. At these extreme temperatures, active (heat exchanger and phase-change cooling) or passive (fins and thermal interface materials) cooling strategies add considerable mass and complicate the systems, which is often infeasible. Thus, new material solutions beyond conventional silicon complementary metal–oxide–semiconductor devices are necessary for high-temperature, resilient electronic systems. The ultimate realization of high-temperature electronic systems requires united efforts to develop, integrate and ultimately manufacture non-silicon-based logic and memory technologies, non-traditional metals for interconnects and ceramic packaging technology.
中文翻译:
高温数字电子产品材料
硅微电子技术由互补的金属氧化物半导体技术组成,几乎改变了人类生活的方方面面,从通信到交通、娱乐和医疗保健。尽管硅基器件被广泛使用并成为主流,但在超过 125 °C 的温度下并不可靠。 太空探索、地热能收集、核能、无人航空电子系统和自动驾驶等新兴技术前沿将依赖于在高达 500 °C 及以上温度下运行的控制系统、传感器和通信设备。在这些极端温度下,主动(热交换器和相变冷却)或被动(翅片和热界面材料)冷却策略会增加相当大的质量并使系统复杂化,这通常是不可行的。因此,超越传统硅互补金属氧化物半导体器件的新材料解决方案对于高温、弹性电子系统是必要的。高温电子系统的最终实现需要共同努力,开发、集成并最终制造非硅基逻辑和存储器技术、用于互连的非传统金属和陶瓷封装技术。