当前位置:
X-MOL 学术
›
IEEE Trans. Inform. Forensics Secur.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
EMSim+: Accelerating Electromagnetic Security Evaluation With Generative Adversarial Network and Transfer Learning
IEEE Transactions on Information Forensics and Security ( IF 6.3 ) Pub Date : 2024-10-18 , DOI: 10.1109/tifs.2024.3483551 Ya Gao, Haocheng Ma, Qizhi Zhang, Xintong Song, Yier Jin, Jiaji He, Yiqiang Zhao
IEEE Transactions on Information Forensics and Security ( IF 6.3 ) Pub Date : 2024-10-18 , DOI: 10.1109/tifs.2024.3483551 Ya Gao, Haocheng Ma, Qizhi Zhang, Xintong Song, Yier Jin, Jiaji He, Yiqiang Zhao
Electromagnetic side-channel analysis (EM SCA) attack poses a serious threat to integrated circuits (ICs), necessitating timely vulnerability detection before deployment to enhance EM side-channel security. Various EM simulation methods have emerged for analyzing EM side-channel leakage, providing sufficiently accurate results. However, these simulator-based methods still face two principal challenges in the design process of high security chips. Firstly, the large volume of measurement data required for a single security evaluation results in substantial time overhead. Secondly, design iterations lead to repetitive security evaluations, thus increasing the evaluation cost. In this paper, we propose EMSim+ which includes two efficient and accurate layout-level EM side-channel leakage evaluation frameworks named EMSim+GAN and EMSim+GAN+TL to mitigate the above challenges, respectively. EMSim+GAN integrates a Generative Adversarial Network (GAN) model that utilizes the chip’s cell current and power grid information to predict EM emanations quickly. EMSim+GAN+TL further incorporates transfer learning (TL) within the framework, leveraging the experience of existing designs to reduce the training datasets for new designs and achieve the target accuracy. We compare the simulation results of EMSim+ with the state-of-the-art EM simulation tool, EMSim as well as silicon measurements. Experimental results not only prove the high efficiency and high simulation accuracy of EMSim+, but also verify its generalization ability across different designs and technology nodes.
中文翻译:
EMSim+:利用生成式对抗网络和迁移学习加速电磁安全评估
电磁侧信道分析 (EM SCA) 攻击对集成电路 (IC) 构成严重威胁,需要在部署前及时检测漏洞,以增强 EM 侧信道的安全性。已经出现了各种 EM 仿真方法来分析 EM 侧信道泄漏,从而提供了足够准确的结果。然而,这些基于仿真器的方法在高安全性芯片的设计过程中仍然面临两个主要挑战。首先,单次安全评估所需的大量测量数据会导致大量的时间开销。其次,设计迭代导致重复的安全评估,从而增加了评估成本。在本文中,我们提出了 EMSim+,它包括两个高效、准确的版图级电磁侧信道泄漏评估框架,分别名为 EMSim+GAN 和 EMSim+GAN+TL,以缓解上述挑战。EMSim+GAN 集成了生成对抗网络 (GAN) 模型,该模型利用芯片的电池电流和电网信息来快速预测 EM 发射。EMSim+GAN+TL 进一步将迁移学习 (TL) 纳入框架中,利用现有设计的经验来减少新设计的训练数据集并实现目标精度。我们将 EMSim+ 的仿真结果与最先进的 EM 仿真工具 EMSim 以及硅测量进行了比较。实验结果不仅证明了 EMSim+ 的高效率和高仿真精度,也验证了其在不同设计和技术节点的泛化能力。
更新日期:2024-10-18
中文翻译:
EMSim+:利用生成式对抗网络和迁移学习加速电磁安全评估
电磁侧信道分析 (EM SCA) 攻击对集成电路 (IC) 构成严重威胁,需要在部署前及时检测漏洞,以增强 EM 侧信道的安全性。已经出现了各种 EM 仿真方法来分析 EM 侧信道泄漏,从而提供了足够准确的结果。然而,这些基于仿真器的方法在高安全性芯片的设计过程中仍然面临两个主要挑战。首先,单次安全评估所需的大量测量数据会导致大量的时间开销。其次,设计迭代导致重复的安全评估,从而增加了评估成本。在本文中,我们提出了 EMSim+,它包括两个高效、准确的版图级电磁侧信道泄漏评估框架,分别名为 EMSim+GAN 和 EMSim+GAN+TL,以缓解上述挑战。EMSim+GAN 集成了生成对抗网络 (GAN) 模型,该模型利用芯片的电池电流和电网信息来快速预测 EM 发射。EMSim+GAN+TL 进一步将迁移学习 (TL) 纳入框架中,利用现有设计的经验来减少新设计的训练数据集并实现目标精度。我们将 EMSim+ 的仿真结果与最先进的 EM 仿真工具 EMSim 以及硅测量进行了比较。实验结果不仅证明了 EMSim+ 的高效率和高仿真精度,也验证了其在不同设计和技术节点的泛化能力。