当前位置: X-MOL 学术Algebra Number Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Galois orbits of torsion points near atoral sets
Algebra & Number Theory ( IF 0.9 ) Pub Date : 2024-10-18 , DOI: 10.2140/ant.2024.18.1945
Vesselin Dimitrov, Philipp Habegger

We prove that the Galois equidistribution of torsion points of the algebraic torus 𝔾md extends to the singular test functions of the form log |P|, where P is a Laurent polynomial having algebraic coefficients that vanishes on the unit real d-torus in a set whose Zariski closure in 𝔾md has codimension at least 2. Our result includes a power-saving quantitative estimate of the decay rate of the equidistribution. It refines an ergodic theorem of Lind, Schmidt, and Verbitskiy, of which it also supplies a purely Diophantine proof. As an application, we confirm Ih’s integrality finiteness conjecture on torsion points for a class of atoral divisors of 𝔾md.



中文翻译:


接近 atoral sets 的扭转点的伽罗瓦轨道



我们证明代数环面 𝔾md 的扭点的伽罗瓦等 d 分分布扩展到形式为 log|P| 的奇异测试函数,其中 2 的共维至少为 2。我们的结果包括对等分布衰减率的节能定量估计。它提炼了 Lind、Schmidt 和 Verbitskiy 的遍历定理,其中还提供了一个纯粹的丢番图证明。作为一个应用,我们确认了 的一类对数约数的扭转点的 Ih 积分有限性猜想 𝔾md

更新日期:2024-10-19
down
wechat
bug