当前位置:
X-MOL 学术
›
J. Bone Joint. Surg.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Computer Modeling-Based Target Zone for Transposition Osteotomy of the Acetabulum in Patients with Hip Dysplasia.
The Journal of Bone & Joint Surgery ( IF 4.4 ) Pub Date : 2024-10-17 , DOI: 10.2106/jbjs.23.01132 Kenji Kitamura,Masanori Fujii,Goro Motomura,Satoshi Hamai,Shinya Kawahara,Taishi Sato,Ryosuke Yamaguchi,Daisuke Hara,Takeshi Utsunomiya,Yasuharu Nakashima
The Journal of Bone & Joint Surgery ( IF 4.4 ) Pub Date : 2024-10-17 , DOI: 10.2106/jbjs.23.01132 Kenji Kitamura,Masanori Fujii,Goro Motomura,Satoshi Hamai,Shinya Kawahara,Taishi Sato,Ryosuke Yamaguchi,Daisuke Hara,Takeshi Utsunomiya,Yasuharu Nakashima
BACKGROUND
This study aimed to determine the acetabular position to optimize hip biomechanics after transposition osteotomy of the acetabulum (TOA), a specific form of periacetabular osteotomy, in patients with hip dysplasia.
METHODS
We created patient-specific finite-element models of 46 patients with hip dysplasia to simulate 12 virtual TOA scenarios: lateral rotation to achieve a lateral center-edge angle (LCEA) of 30°, 35°, and 40° combined with anterior rotation of 0°, 5°, 10°, and 15°. Joint contact pressure (CP) on the acetabular cartilage during a single-leg stance and simulated hip range of motion without osseous impingement were calculated. The optimal acetabular position was defined as satisfying both normal joint CP and the required range of motion for activities of daily living. Multivariable logistic regression analysis was used to identify preoperative morphological predictors of osseous impingement after virtual TOA with adequate acetabular correction.
RESULTS
The prevalence of hips in the optimal position was highest (65.2%) at an LCEA of 30°, regardless of the amount of anterior rotation. While the acetabular position minimizing peak CP varied among patients, approximately 80% exhibited normalized peak CP at an LCEA of 30° and 35° with 15° of anterior rotation, which were the 2 most favorable configurations among the 12 simulated scenarios. In this context, the preoperative head-neck offset ratio (HNOR) at the 1:30 clock position (p = 0.018) was an independent predictor of postoperative osseous impingement within the required range of motion. Specifically, an HNOR of <0.14 at the 1:30 clock position predicted limitation of required range of motion after virtual TOA (sensitivity, 57%; specificity, 81%; and area under the receiver operating characteristic curve, 0.70).
CONCLUSIONS
Acetabular reorientation to an LCEA of between 30° and 35° with an additional 15° of anterior rotation may serve as a biomechanics-based target zone for surgeons performing TOA in most patients with hip dysplasia. However, patients with a reduced HNOR at the 1:30 clock position may experience limited range of motion in activities of daily living postoperatively.
CLINICAL RELEVANCE
This study provides a biomechanics-based target for refining acetabular reorientation strategies during TOA while considering morphological factors that may limit the required range of motion.
中文翻译:
基于计算机建模的目标区,用于髋关节发育不良患者髋臼转位截骨术。
背景 本研究旨在确定髋臼发育不良患者髋臼转位截骨术 (TOA) 后髋臼位置以优化髋臼生物力学。方法 我们创建了 46 名髋关节发育不良患者的患者特异性有限元模型,以模拟 12 种虚拟 TOA 场景:横向旋转以实现 30°、35° 和 40° 的横向中心边缘角度 (LCEA) 以及 0°、5°、10° 和 15° 的前旋。计算了单腿站立期间髋臼软骨上的关节接触压力 (CP) 和无骨撞击的模拟髋关节运动范围。最佳髋臼位置定义为满足正常关节 CP 和日常生活活动所需的运动范围。采用多变量 logistic 回归分析确定虚拟 TOA 后髋臼充分矫正后骨撞击的术前形态学预测因子。结果在 30° 的 LCEA 下,最佳位置的髋关节患病率最高 (65.2%),无论前旋量如何。虽然最小化峰值 CP 的髋臼位置因患者而异,但大约 80% 的患者在 LCEA 为 30° 和 35° 时表现出标准化峰值 CP 和 15° 前旋,这是 12 个模拟场景中最有利的 2 种配置。在这种情况下,1:30 时钟位置的术前头颈偏移比 (HNOR) (p = 0.018) 是所需运动范围内术后骨撞击的独立预测因子。具体而言,HNOR 为 <0。14 在 1:30 时钟位置预测了虚拟 TOA 后所需运动范围的限制(敏感性,57%;特异性,81%;和受试者工作特征曲线下面积,0.70)。结论髋臼重新定位为 30° 至 35° 之间的 LCEA,并额外向前旋转 15°,可作为外科医生对大多数髋关节发育不良患者进行 TOA 的基于生物力学的目标区域。然而,在 1:30 时钟位置 HNOR 降低的患者术后日常生活活动范围可能会受到限制。临床相关性 本研究提供了一个基于生物力学的目标,用于改进 TOA 期间的髋臼重新定位策略,同时考虑可能限制所需运动范围的形态学因素。
更新日期:2024-10-17
中文翻译:
基于计算机建模的目标区,用于髋关节发育不良患者髋臼转位截骨术。
背景 本研究旨在确定髋臼发育不良患者髋臼转位截骨术 (TOA) 后髋臼位置以优化髋臼生物力学。方法 我们创建了 46 名髋关节发育不良患者的患者特异性有限元模型,以模拟 12 种虚拟 TOA 场景:横向旋转以实现 30°、35° 和 40° 的横向中心边缘角度 (LCEA) 以及 0°、5°、10° 和 15° 的前旋。计算了单腿站立期间髋臼软骨上的关节接触压力 (CP) 和无骨撞击的模拟髋关节运动范围。最佳髋臼位置定义为满足正常关节 CP 和日常生活活动所需的运动范围。采用多变量 logistic 回归分析确定虚拟 TOA 后髋臼充分矫正后骨撞击的术前形态学预测因子。结果在 30° 的 LCEA 下,最佳位置的髋关节患病率最高 (65.2%),无论前旋量如何。虽然最小化峰值 CP 的髋臼位置因患者而异,但大约 80% 的患者在 LCEA 为 30° 和 35° 时表现出标准化峰值 CP 和 15° 前旋,这是 12 个模拟场景中最有利的 2 种配置。在这种情况下,1:30 时钟位置的术前头颈偏移比 (HNOR) (p = 0.018) 是所需运动范围内术后骨撞击的独立预测因子。具体而言,HNOR 为 <0。14 在 1:30 时钟位置预测了虚拟 TOA 后所需运动范围的限制(敏感性,57%;特异性,81%;和受试者工作特征曲线下面积,0.70)。结论髋臼重新定位为 30° 至 35° 之间的 LCEA,并额外向前旋转 15°,可作为外科医生对大多数髋关节发育不良患者进行 TOA 的基于生物力学的目标区域。然而,在 1:30 时钟位置 HNOR 降低的患者术后日常生活活动范围可能会受到限制。临床相关性 本研究提供了一个基于生物力学的目标,用于改进 TOA 期间的髋臼重新定位策略,同时考虑可能限制所需运动范围的形态学因素。