当前位置: X-MOL 学术ACM Comput. Surv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cold Start Latency in Serverless Computing: A Systematic Review, Taxonomy, and Future Directions
ACM Computing Surveys ( IF 23.8 ) Pub Date : 2024-10-17 , DOI: 10.1145/3700875
Muhammed GOLEC, GUNEET KAUR WALIA, MOHIT KUMAR, FELIX CUADRADO, Sukhpal Singh Gill, STEVE UHLIG

Recently, academics and the corporate sector have paid attention to serverless computing, which enables dynamic scalability and an economic model. In serverless computing, users only pay for the time they actually use resources, enabling zero scaling to optimise cost and resource utilisation. However, this approach also introduces the serverless cold start problem. Researchers have developed various solutions to address the cold start problem, yet it remains an unresolved research area. In this article, we propose a systematic literature review on clod start latency in serverless computing. Furthermore, we create a detailed taxonomy of approaches to cold start latency, which we use to investigate existing techniques for reducing the cold start time and frequency. We have classified the current studies on cold start latency into several categories such as caching and application-level optimisation-based solutions, as well as Artificial Intelligence (AI)/Machine Learning (ML)-based solutions. Moreover, we have analyzed the impact of cold start latency on quality of service, explored current cold start latency mitigation methods, datasets, and implementation platforms, and classified them into categories based on their common characteristics and features. Finally, we outline the open challenges and highlight the possible future directions.

中文翻译:


无服务器计算中的冷启动延迟:系统综述、分类法和未来方向



最近,学术界和企业部门都关注了无服务器计算,它实现了动态可扩展性和经济模型。在无服务器计算中,用户只需为实际使用资源的时间付费,从而实现零扩展以优化成本和资源利用率。但是,这种方法也引入了无服务器冷启动问题。研究人员已经开发了各种解决方案来解决冷启动问题,但它仍然是一个尚未解决的研究领域。在本文中,我们提出了关于无服务器计算中 clod 启动延迟的系统文献综述。此外,我们还创建了冷启动延迟方法的详细分类法,用于研究减少冷启动时间和频率的现有技术。我们将当前关于冷启动延迟的研究分为几类,例如基于缓存和应用程序级优化的解决方案,以及基于人工智能 (AI)/机器学习 (ML) 的解决方案。此外,我们还分析了冷启动延迟对服务质量的影响,探讨了当前的冷启动延迟缓解方法、数据集和实现平台,并根据它们的共同特征和特征将它们分类。最后,我们概述了开放的挑战并强调了未来可能的方向。
更新日期:2024-10-17
down
wechat
bug