Critical Care ( IF 8.8 ) Pub Date : 2024-10-18 , DOI: 10.1186/s13054-024-05126-4 María Marín-Cerezuela, Ruben Martín-Latorre, Juan Frasquet, Jesus Ruiz-Ramos, Sandra Garcia-Contreras, Mónica Gordón, María Jesús Broch, Álvaro Castellanos-Ortega, Paula Ramirez
To the Editor,
Extracorporeal membrane oxygenation (ECMO) is increasingly being used as a rescue therapy for severe acute respiratory distress syndrome or severe circulatory failure. Nosocomial infections are common in ECMO patients; therefore, antibiotics are frequently used [1]. However, preliminary evidence suggests that ECMO support could alter antibiotic serum concentrations. Both subtherapeutic and elevated serum concentrations of commonly used antimicrobial agents have been reported [2]. New antimicrobials, especially novel β-Lactams and β-Lactam/β-Lactamase inhibitors, have been commercialized after a thorough pharmacokinetic (PK) assessment. However, new molecule PK changes have again been reported in critically ill patients, especially in those on ECMO support [3]. Circuit adsorption and sequestration are added to critical illness PK derangements, yet the specific weight of each of these factors is not clear [2, 3]. Cefiderocol is a siderophore cephalosporin active against gram-negative bacteria, including carbapenemase-producing strains, with promising positioning for difficult-to-treat infections. Scarce data has been published about its pharmacokinetics in patients with ECMO support [2, 3]. Therefore, we performed an observational and prospective study including adult critically ill patients treated with cefiderocol between January 2022 and December 2023 at a tertiary university hospital. Total plasma concentrations (Cp) at trough (Cmin) and at the end of the 3 h infusion (Cmax) were determined using UPLC-MS/MS after at least 72 h of treatment were completed. Free plasma concentrations (fCmin, fCmax) were corrected using the average protein binding from clinical pharmakocinetic studies [4]. The minimum inhibitory concentration (MIC) of cefiderocol on the antibiogram was determined by the microdilution technique (UMIC® Cefiderocol BMD test). The established therapeutic objective (Pk/Pd) was when Cp was at least four times above the MIC (100%fT > 4 × MIC). The calculation of the pharmacokinetic parameters was performed from the plasma concentrations obtained and Pmetrics version 1.5.2 software package for R was used (1) [5]. A 3-compartment model with a proportional error model for the intraindividual variability was used (2) [6]. Hyperfiltration was considered when creatinine clearance (ClCr) exceeded 130 ml/min. Clinical response was defined as the resolution of the signs and symptoms present at the time of the infection. The study protocol was approved by the local Ethics Committee, and written informed consent was obtained from the patient or their legal representatives, and. A Student’s t-test or Mann–Whitney test was used to compare quantitative variables and Pearson’s chi-square or Fisher’s exact test for qualitative variables according to normality, using STATA v.14.2. Statistical significance was considered if p ≤ 0.05.
Ten caucasian patients were included: four of them were treated with veno-venous ECMO, and one of them additionally underwent continuous renal replacement therapy (CRRT). The demographic and clinical characteristics of patients are depicted in Table 1. Patients under ECMO support were managed with a peripheral femoro-jugular venovenous configuration. ECMO Cardiohelp HLS system (Maquet Cardiopulmonary ®, Rastaat, Germany) was used in all cases. The circuit comprises a polymethylpentene membrane oxygenator, a centrifugal pump, a heat exchanger and polyvinil chloride tubing. All components of the circuit were treated with heparin (Bioline coating ®, Maquet). Physiological saline solution was used to prime the circuit.
All patients received 2 g/8 h in a 3-h infusion for a mean duration of 10 (4.03) days. Hyperfiltration was present in two ECMO patients. Treated infections were nosocomial pneumonia in nine cases (90%) and nosocomial bloodstream infection in one (10%). All microorganisms involved in the treated infections were multidrug resistant strains, but sensitive to cefiderocol [MIC 0.56 (0.39) mg/L]. No patient received combined therapy, and no adverse effects associated with cefiderocol were observed. Serum cefiderocol measurements for the entire cohort were fCmin 25.2 (8.4–28.5) μg/mL and fCmax 46.2 (36.9–59.6) μg/mL. No differences in fCmin or fCmax were found between the ECMO group and the non-ECMO group (Table 2 supplementary material). All patients achieved the 100%fT > 4 × MIC objective. ECMO patients were sampled after a median time of 31 days (10–29) of ECMO treatment. ECMO membranes had not been replaced before cefiderocol assessment (previous duration in all cases of at least 96 h). Individual PK parameters are shown in Table 1. Our critically ill patients had lower Vd and CL compared to healthy patients. Important variations in Vd, CL, and especially in half-life were present in our population showing heterogeneity of our patient sample and the presence of multiple factors affecting cefiderocol PK. Apparently the presence of ECMO treatment did not result in any specific pharmacokinetic behavior of cefiderocol.
Previous cefiderocol serum concentrations studies performed in critically ill patients had presented heterogeneous results. Suboptimal fT% > MIC due to low fCmin has been described in two studies (50% and 23% of patients, respectively), and this was associated with microbiological failure in A baumannii infection in the later one [7, 8]. However, the potential factors associated with these alterations were not studied. Conversely, 100%fT > 4 × MIC was achieved in another two studies including 12 patients with difficult to treat infections by multidrug resistant gram-negative bacteria [9, 10]. Katsube et al. studied seven patients with pneumonia in whom the Pk/Pd target was attained in plasma and also in epithelial lining fluid when treated with a standardized cefiderocol dosage [9]. The cefiderocol dosage recommendation for CRRT should be adjusted to the effluent rates and presence of residual renal function. These two factors were evaluated to indicate a full dosage (2 g/8 h) in two studies including six patients, achieving accurate plasma concentrations and without detecting adverse events [11, 12].
Cefiderocol PK in ECMO patients have been assessed successfully in two ex vivo studies suggesting no loss due to sequestration or adsorption [13, 14]. These results were corroborated in one critically ill patient under ECMO therapy due to COVID19 [15]. To our knowledge, this is the first time that critically ill patients with and without ECMO support have been pharmacokinetically studied and presented together. Our results suggest that the pharmacokinetic profile of cefiderocol in critically ill patients is adequate, even in the presence of ECMO treatment.
No datasets were generated or analysed during the current study.
Marcus JE, Shah A, Peek GJ, MacLaren G. Nosocomial infections in adults receiving extracorporeal membrane oxygenation: a review for infectious diseases clinicians. Clin Infect Dis. 2024;5:120.
Google Scholar
Shekar K, Abdul-Aziz MH, Cheng V, Burrows F, Buscher H, Cho YJ, et al. Antimicrobial exposures in critically ill patients receiving extracorporeal membrane oxygenation. Am J Respir Crit Care Med. 2023;207:704–20.
Article PubMed Google Scholar
Bakdach D, Elajez R, Bakdach AR, Awaisu A, De Pascale G, Hssain AA. Pharmacokinetics, pharmacodynamics, and dosing considerations of novel β-lactams and β-lactam/β-lactamase inhibitors in critically ill adult patients: focus on obesity, augmented renal clearance, renal replacement therapies, and extracorporeal membrane oxygenation. J Clin Med. 2022;11(23):6898.
Article PubMed PubMed Central Google Scholar
Katsube T, Echols R, Wajima T. Pharamacokinetic and pharmacodynamics profiles of cefiderocol, a novel siderophore cephalosporin. Clin Infect Dis. 2019;69:552–8.
Article Google Scholar
Neely MN, van Guilder MG, Yamada WM, Schumitzky A, Jelliffe RW. Accurate detection of outliers and subpopulations with Pmetrics, a nonparametric and parametric pharmacometric modeling and simulation package for R. Ther Drug Monit. 2012;34:467–76.
Article PubMed PubMed Central Google Scholar
Kawaguchi N, Katsube T, Echols R, Wajima T. Population pharmacokinetic and pharmacokinetic/pharmacodynamic analyses of cefiderocol, a parenteral siderophore cephalosporin, in patients with pneumonia, bloodstream infection/sepsis, or complicated urinary tract infection. Antimicrob Agents Chemother. 2021;65(3):e01437-e1520.
Article PubMed PubMed Central Google Scholar
Mernissi T, Bodeau S, Andre C, Zahr N, Mary A, Dupont H, et al. An HPLC assay for the therapeutic drug monitoring of cefiderocol in critically ill patients. J Antimicrob Chemother. 2021;76:1643–6.
Article PubMed Google Scholar
Gatti M, Bartoletti M, Cojutti PG, Gaibani P, Conti M, Giannella M, et al. A descriptive case series of pharmacokinetic/pharmacodynamic target attainment and microbiological outcome in critically ill patients with documented severe extensively drug-resistant Acinetobacter baumannii bloodstream infection and/or ventilator-associated pneumonia treated with cefiderocol. J Glob Antimicrob Resist. 2021;27:294–8.
Article PubMed Google Scholar
Katsube T, Nicolau DP, Rodvold KA, Wunderink RG, Echols R, Matsunaga Y, et al. Intrapulmonary pharmacokinetic profile of cefiderocol in mechanically ventilated patients with pneumonia. J Antimicrob Chemother. 2021;76(11):2902–5.
Article PubMed PubMed Central Google Scholar
König C, Both A, Rohde H, Kluge S, Frey OR, Röhr AC, Wichmann D. Cefiderocol in critically ill patients with multi-drug resistant pathogens: real-life data on pharmacokinetics and microbiological surveillance. Antibiotics (Basel). 2021;10(6):649.
Article PubMed Google Scholar
Kobic E, Gill CM, Brian Mochon A, Nicolasora NP, Nicolau DP. Cefiderocol pharmacokinetics in a patient receiving continuous venovenous hemodiafiltration. Open Forum Infect Dis. 2021. https://doi.org/10.1093/ofid/ofab252.
Article PubMed PubMed Central Google Scholar
Gatti M, Rinaldi M, Tonetti T, Gaibani P, Siniscalchi A, Viale P, Pea F. Pharmacokinetics/pharmacodynamics of cefiderocol administered by continuous infusion in a case series of critically ill patients with carbapenem-resistant Acinetobacter baumannii infections undergoing continuous venovenous haemodiafiltration (CVVHDF). Int J Antimicrob Agents. 2023;62(2): 106852.
Article PubMed Google Scholar
Booke H, Friedrichson B, Draheim L, von Groote TC, Frey O, Röhr A, et al. No sequestration of commonly used anti-infectives in the extracorporeal membrane oxygenation (ECMO) circuit-an ex vivo study. Antibiotics (Basel). 2024;13(4):373.
Article PubMed Google Scholar
Berry AV, Conelius A, Gluck JA, Nicolau DP, Kuti JL. Cefiderocol is not sequestered in an ex vivo extracorporeal membrane oxygenation (ECMO) circuit. Eur J Drug Metab Pharmacokinet. 2023;48(4):437–41.
Article PubMed Google Scholar
Riera J, Domenech L, García S, Pau A, Sosa M, Domenech J, et al. Pharmacokinetics of cefiderocol during extracorporeal membrane oxygenation: a case report. Perfusion. 2023;38(1_suppl):40–3. https://doi.org/10.1177/02676591231160462.
Article PubMed Google Scholar
Saisho Y, Katsube T, White S, Fukase H, Shimada J. Pharmacokinetics, safety, and tolerability of cefderocol, a novel siderophore cephalo sporin for Gram-negative bacteria, in healthy subjects. Antimicrob Agents Chemother. 2018;62:e02163-e2217.
Article PubMed PubMed Central Google Scholar
Download references
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Authors and Affiliations
Pharmacy Department, Hospital Universitario y Politécnico la Fe, Valencia, Spain
María Marín-Cerezuela & Sandra Garcia-Contreras
Critical Care Department, Hospital Universitario y Politécnico la Fe, Avd. Vicente Abril Martorell 106, 46006, Valencia, Spain
Ruben Martín-Latorre, Mónica Gordón, María Jesús Broch, Álvaro Castellanos-Ortega & Paula Ramirez
Microbiology Department, Hospital Universitario y Politécnico la Fe, Valencia, Spain
Juan Frasquet
Pharmacy Department, Hospital Santa Creu I Sant Pau, Barcelona, Spain
Jesus Ruiz-Ramos
- María Marín-CerezuelaView author publications
You can also search for this author in PubMed Google Scholar
- Ruben Martín-LatorreView author publications
You can also search for this author in PubMed Google Scholar
- Juan FrasquetView author publications
You can also search for this author in PubMed Google Scholar
- Jesus Ruiz-RamosView author publications
You can also search for this author in PubMed Google Scholar
- Sandra Garcia-ContrerasView author publications
You can also search for this author in PubMed Google Scholar
- Mónica GordónView author publications
You can also search for this author in PubMed Google Scholar
- María Jesús BrochView author publications
You can also search for this author in PubMed Google Scholar
- Álvaro Castellanos-OrtegaView author publications
You can also search for this author in PubMed Google Scholar
- Paula RamirezView author publications
You can also search for this author in PubMed Google Scholar
Contributions
MMC and PR wrote the main manuscript text. JRR, RML, MJB, JF and MG prepared Table 1. AC and SGC reviewed the manuscript to assess concordance with the literature. All authors reviewed the manuscript.
Corresponding author
Correspondence to Paula Ramirez.
Competing interest
The authors declare no competing interests.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Additional file1 (DOCX 19 KB)
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Reprints and permissions
Cite this article
Marín-Cerezuela, M., Martín-Latorre, R., Frasquet, J. et al. Cefiderocol pharmacokinetics in critically ill patients undergoing ECMO support. Crit Care 28, 337 (2024). https://doi.org/10.1186/s13054-024-05126-4
Download citation
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13054-024-05126-4
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
中文翻译:
头孢德罗考在接受 ECMO 支持的危重患者中的药代动力学
致编辑:
体外膜肺氧合 (ECMO) 越来越多地被用作严重急性呼吸窘迫综合征或严重循环衰竭的抢救疗法。院内感染在 ECMO 患者中很常见;因此,抗生素经常使用[1]。然而,初步证据表明,ECMO 支持可以改变抗生素血清浓度。据报道,常用抗菌药物的亚治疗级和血清浓度升高[2]。新的抗菌剂,尤其是新型 β-内酰胺类药物和 β-内酰胺/β-内酰胺酶抑制剂,在经过全面的药代动力学 (PK) 评估后已商业化。然而,在危重患者中再次报道了新的分子 PK 变化,尤其是在接受 ECMO 支持的患者中 [3]。电路吸附和隔离被添加到危重疾病 PK 紊乱中,但这些因素的具体权重尚不清楚 [2, 3]。头孢哄醇是一种铁载体头孢菌素,对革兰氏阴性菌(包括产生碳青霉烯酶的菌株)具有活性,对难以治疗的感染具有前景。关于其在 ECMO 支持患者中的药代动力学的稀缺数据已发表 [2, 3]。因此,我们进行了一项观察性和前瞻性研究,包括 2022 年 1 月至 2023 年 12 月期间在一家三级大学医院接受头孢地考治疗的成年危重患者。在至少处理 72 小时后,使用 UPLC-MS/MS 测定谷值 (Cmin) 和 3 小时输注结束时 (Cmax) 的总血浆浓度 (Cp)。使用临床药物学研究中的平均蛋白结合来校正游离血浆浓度 (fCmin, fCmax) [4]。 通过微量稀释技术 (UMIC® 头孢得醇 BMD 测试) 测定头孢地考对抗菌谱的最低抑菌浓度 (MIC)。既定的治疗目标 (Pk/Pd) 是当 Cp 至少比 MIC 高四倍 (100%fT > 4 × MIC) 时。根据获得的血浆浓度计算药代动力学参数,并使用 R 的 Pmetrics 1.5.2 版软件包 (1) [5]。使用了一个 3 区室模型,该模型具有个体内变异性的比例误差模型 (2) [6]。当肌酐清除率 (ClCr) 超过 130 ml/min 时,考虑高滤过。临床反应定义为感染时出现的体征和症状的消退。研究方案得到了当地伦理委员会的批准,并获得了患者或其法定代表人的书面知情同意书,并且。使用 STATA v.14.2,使用学生 t 检验或 Mann-Whitney 检验来比较定量变量和根据正态性比较定性变量的 Pearson 卡方检验或 Fisher 精确检验。如果 p ≤ 0.05,则考虑统计学显着性。
纳入 10 例白人患者: 其中 4 例接受了静脉-静脉 ECMO 治疗,其中 1 例还接受了连续性肾脏替代治疗 (CRRT)。患者的人口统计学和临床特征见表 1。接受 ECMO 支持的患者采用外周股颈静脉配置进行管理。所有病例均使用 ECMO Cardiohelp HLS 系统 (Maquet Cardiopulmonary ® , Rastaat, Germany)。该回路包括一个聚甲基戊烯膜氧合器、一个离心泵、一个热交换器和聚氯乙烯管。电路的所有组件都用肝素 (Bioline 涂层®、Maquet) 处理。使用生理盐水溶液灌注回路。
所有患者接受 2 g/8 h 的 3 小时输注,平均持续时间为 10 (4.03) 天。2 例 ECMO 患者出现高滤过。治疗的感染是 9 例 (90%) 的医院肺炎和 1 例 (10%) 的医院血流感染。所有参与治疗感染的微生物均为多重耐药菌株,但对头孢地考敏感 [MIC 0.56 (0.39) mg/L]。没有患者接受联合治疗,也没有观察到与头孢地考相关的不良反应。整个队列的血清头孢地考测量值为 fCmin 25.2 (8.4-28.5) μg/mL,fCmax 46.2 (36.9-59.6) μg/mL。ECMO 组和非 ECMO 组之间未发现 fCmin 或 fCmax 差异(表 2 补充材料)。所有患者均达到 100%fT > 4 × MIC 目标。ECMO 患者在 ECMO 治疗的中位时间为 31 天 (10-29) 后进行采样。在头孢地考评估之前未更换 ECMO 膜 (所有病例的既往持续时间至少 96 小时)。各个 PK 参数如表 1 所示。与健康患者相比,我们的危重患者具有较低的 Vd 和 CL。在我们的人群中存在 Vd 、 CL 尤其是半衰期的重要变化,表明我们患者样本的异质性以及影响头孢地考 PK 的多种因素的存在。显然,ECMO 治疗的存在不会导致头孢地考的任何特定药代动力学行为。
先前在危重患者中进行的头孢地考血清浓度研究呈现了异质性结果。两项研究 (分别为 50% 和 23% 的患者) 描述了由于低 fCmin 而导致的次优 fT% > MIC,这与后一项研究中鲍曼不动杆菌感染的微生物学失败有关 [7, 8]。然而,与这些改变相关的潜在因素尚未得到研究。相反,在另外两项研究中实现了 100%fT > 4 × MIC,包括 12 例难以治疗的综合耐药革兰氏阴性菌感染患者 [9, 10]。Katsube 等人研究了 7 例肺炎患者,当接受标准化头孢地考剂量治疗时,血浆和上皮衬里液均达到 Pk/Pd 目标 [9]。CRRT 的头孢地考推荐剂量应根据流出率和残余肾功能的存在进行调整。在包括 6 名患者的两项研究中,对这两个因素进行了评估,表明全剂量 (2 g/8 h) 达到准确的血浆浓度,且未检测到不良事件 [11, 12]。
两项离体研究已成功评估 ECMO 患者的头孢罗醇 PK,表明没有因隔离或吸附而造成的损失 [13, 14]。这些结果在一名因 COVID19 接受 ECMO 治疗的危重患者中得到证实 [15]。据我们所知,这是第一次对有和没有 ECMO 支持的危重患者进行药代动力学研究和一起呈现。我们的结果表明,即使在 ECMO 治疗存在的情况下,头孢地考在危重患者中的药代动力学特征也是足够的。
在当前研究期间没有生成或分析数据集。
Marcus JE, Shah A, Peek GJ, MacLaren G. 接受体外膜肺氧合的成人院内感染:传染病临床医生综述。临床感染病学 2024;5:120。谷歌学术
Shekar K、Abdul-Aziz MH、Cheng V、Burrows F、Buscher H、Cho YJ 等人。接受体外膜肺氧合的危重患者的抗菌药物暴露。Am J Respir Crit Care Med. 2023;207:704–20.
文章 PubMed 谷歌学术
Bakdach D, Elajez R, Bakdach AR, Awaisu A, De Pascale G, Hssain AA.新型 β-内酰胺类药物和 β-内酰胺/β-内酰胺酶抑制剂在危重成人患者中的药代动力学、药效学和剂量考虑:重点关注肥胖、肾脏清除率增加、肾脏替代疗法和体外膜肺氧合。临床医学杂志 2022;11(23):6898.
文章: PubMed PubMed Central Google Scholar
Katsube T, Echols R, Wajima T. 头孢地考(一种新型铁载体头孢菌素)的法老代动力学和药效学特征。Clin Infect Dis. 2019;69:552–8.文章 Google Scholar
Neely MN, van Guilder MG, Yamada WM, Schumitzky A, Jelliffe RW.使用 Pmetrics 准确检测异常值和亚群,Pmetrics 是 R. Ther Drug Monit 的非参数和参数定量药物建模和模拟软件包。2012;34:467–76.
文章: PubMed PubMed Central Google Scholar
Kawaguchi N, Katsube T, Echols R, Wajima T. 头孢地考(一种肠外铁载体头孢菌素)在肺炎、血流感染/败血症或复杂性尿路感染患者中的群体药代动力学和药代动力学/药效学分析。抗菌剂化疗。2021;65(3):e01437-e1520。
文章: PubMed PubMed Central Google Scholar
Mernissi T、Bodeau S、Andre C、Zahr N、Mary A、Dupont H 等人。一种用于危重患者头孢地考治疗药物监测的 HPLC 测定法。J 抗微生物化疗。2021;76:1643–6.
文章 PubMed 谷歌学术
Gatti M、Bartoletti M、Cojutti PG、Gaibani P、Conti M、Giannella M 等人。描述性病例系列,描述有记录的严重广泛耐药鲍曼不动杆菌血流感染和/或接受头孢地考治疗的呼吸机相关性肺炎的危重患者药代动力学/药效学目标实现和微生物学结果。J Glob 抗菌剂。2021;27:294–8.
文章 PubMed 谷歌学术
Katsube T、Nicolau DP、Rodvold KA、Wunderink RG、Echols R、Matsunaga Y 等人。头孢地考在机械通气肺炎患者中的肺内药代动力学特征。J 抗微生物化疗。2021;76(11):2902–5.
文章: PubMed PubMed Central Google Scholar
König C, Both A, Rohde H, Kluge S, Frey OR, Röhr AC, Wichmann D. 头孢哄醇在多重耐药病原体危重患者中的测定:药代动力学和微生物监测的真实数据。抗生素(巴塞尔)。2021;10(6):649.
文章 PubMed 谷歌学术
文章: PubMed PubMed Central Google Scholar
Gatti M, Rinaldi M, Tonetti T, Gaibani P, Siniscalchi A, Viale P, Pea F. 在接受连续静脉血液透析滤过 (CVVHDF) 的碳青霉烯类耐药鲍曼不动杆菌感染危重症患者中连续输注的头孢地考的药代动力学/药效学。国际抗微生物剂杂志。2023;62(2): 106852.
文章 PubMed 谷歌学术
Booke H、Friedrichson B、Draheim L、von Groote TC、Frey O、Röhr A 等人。体外膜肺氧合 (ECMO) 回路中没有常用抗感染药的隔离 - 一项离体研究。抗生素(巴塞尔)。2024;13(4):373.
文章 PubMed 谷歌学术
Berry AV、Conelius A、Gluck JA、Nicolau DP、Kuti JL。头孢哄醇未在离体体外膜肺氧合 (ECMO) 回路中隔离。Eur J 药物代谢因子。2023;48(4):437–41.
文章 PubMed 谷歌学术
文章 PubMed 谷歌学术
Saisho Y, Katsube T, White S, Fukase H, Shimada J. 头孢酚(一种针对革兰氏阴性菌的新型铁载体头孢菌素)在健康受试者中的药代动力学、安全性和耐受性。抗菌剂化疗。2018;62:e02163-e2217.
文章: PubMed PubMed Central Google Scholar
下载参考资料
这项研究没有从公共、商业或非营利部门的资助机构获得任何具体资助。
作者和单位
西班牙瓦伦西亚 Universitario y Politécnico la Fe 医院药学部
玛丽亚·玛丽恩-塞雷苏埃拉 & 桑德拉·加西亚-孔特雷拉斯
重症监护科, Hospital Universitario y Politécnico la Fe, Avd.Vicente Abril Martorell 106, 46006, 瓦伦西亚, 西班牙
鲁本·马丁-拉托雷,莫尼卡·戈尔东,玛丽亚·赫苏斯·布罗赫,阿尔瓦罗·卡斯特拉诺斯-奥尔特加和保拉·拉米雷斯
西班牙瓦伦西亚 Universitario y Politécnico la Fe 医院微生物学系胡安·弗拉斯凯
西班牙巴塞罗那 Santa Creu I Sant Pau 医院药房部耶稣·鲁伊斯-拉莫斯
玛丽亚·马林-塞雷苏埃拉查看作者出版物
您也可以在 PubMed Google Scholar 中搜索此作者
鲁本·马丁-拉托雷查看作者出版物
您也可以在 PubMed Google Scholar 中搜索此作者
胡安·弗拉斯凯查看作者出版物
您也可以在 PubMed Google Scholar 中搜索此作者
耶稣·鲁伊斯-拉莫斯查看作者出版物
您也可以在 PubMed Google Scholar 中搜索此作者
桑德拉·加西亚-孔特雷拉斯查看作者出版物
您也可以在 PubMed Google Scholar 中搜索此作者
莫妮卡·戈尔东查看作者出版物
您也可以在 PubMed Google Scholar 中搜索此作者
玛丽亚·赫苏斯·布洛赫查看作者出版物
您也可以在 PubMed Google Scholar 中搜索此作者
阿尔瓦罗·卡斯特拉诺斯-奥尔特加查看作者出版物
您也可以在 PubMed Google Scholar 中搜索此作者
保拉·拉米雷斯查看作者出版物
您也可以在 PubMed Google Scholar 中搜索此作者
贡献
MMC 和 PR 撰写了主要的手稿文本。JRR、RML、MJB、JF 和 MG 编制了表 1。AC 和 SGC 审查了手稿以评估与文献的一致性。所有作者都审阅了手稿。
通讯作者
与宝拉·拉米雷斯 (Paula Ramirez) 的通信。
利益争夺
作者声明没有利益冲突。
出版商注
施普林格·自然 (Springer Nature) 对已发布的地图和机构隶属关系中的管辖权主张保持中立。
附加文件1 (DOCX 19 KB)
开放获取本文根据 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License 获得许可,该许可允许以任何媒体或格式进行任何非商业用途、共享、分发和复制,前提是您给予原作者和来源适当的署名,提供指向 Creative Commons 许可的链接,并说明您是否修改了许可材料。根据本许可,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的致谢行中另有说明。如果材料未包含在文章的 Creative Commons 许可中,并且您的预期用途未被法律法规允许或超出允许的用途,您将需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by-nc-nd/4.0/。
重印本和权限
引用本文
Marín-Cerezuela, M., Martín-Latorre, R., Frasquet, J. 等人。头孢德罗考在接受 ECMO 支持的危重患者中的药代动力学。Crit Care28, 337 (2024)。https://doi.org/10.1186/s13054-024-05126-4
下载引文
使用本文
您与之共享以下链接的任何人都可以阅读此内容:
抱歉,本文目前没有可共享链接。
由 Springer Nature SharedIt 内容共享计划提供