当前位置:
X-MOL 学术
›
Chem Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electron-acceptor-controlled polyimides for photoredox-neutral trifluoromethylation
Chem Catalysis ( IF 11.5 ) Pub Date : 2024-10-17 , DOI: 10.1016/j.checat.2024.101151 Lin Zuo, Gonghong Qiu, Yan Liu, Xiaolan Chen, Kai Sun, Igor B. Krylov, Lingbo Qu, Alexander O. Terent’ev, Bing Yu
Chem Catalysis ( IF 11.5 ) Pub Date : 2024-10-17 , DOI: 10.1016/j.checat.2024.101151 Lin Zuo, Gonghong Qiu, Yan Liu, Xiaolan Chen, Kai Sun, Igor B. Krylov, Lingbo Qu, Alexander O. Terent’ev, Bing Yu
Heterogeneous photocatalysts present notable benefits over homogeneous systems. However, their application is often hindered by spontaneous electron-hole recombination, undermining photoconversion efficiency. Addressing this, our study introduces a diversity-oriented synthesis of electron-donor-acceptor (D-A)-type polyimides via N-amidation of aromatic dianhydrides with anilines. These polyimides exhibit segregated D-A alignments that facilitate enhanced charge separation, rapid electron transfer, and long-lived photogenerated electron-hole pairs, attributed to superior electron-donating and -accepting capabilities alongside predictable π-π stacking. Their efficacy is demonstrated in catalyzing visible-light-driven redox-neutral C–H trifluoromethylation, transforming pharmaceuticals and bioactive molecules into trifluoromethyl-functionalized products with high yield and selectivity. A continuous-flow fixed-bed photoreactor supports gram-scale synthesis, and the photocatalyst maintains activity through at least four recycling rounds. Time-dependent density functional theory (TD-DFT) and non-covalent interaction (NCI) analyses suggest that the observed performance enhancement is due to controlled photoinduced electron transfer within the D-A system and intrachain π-π stacking.
中文翻译:
用于光氧化还原中性三氟甲基化的电子受体控制聚酰亚胺
异质光催化剂比均相系统具有显着优势。然而,它们的应用经常受到自发电子-空穴复合的阻碍,从而破坏了光转换效率。为了解决这个问题,我们的研究引入了一种通过芳香族二酐与苯胺的 N-酰胺化作用的面向多样性的电子-供体-受体 (D-A) 型聚酰亚胺的合成。这些聚酰亚胺表现出分离的 D-A 排列,有助于增强电荷分离、快速电子转移和长寿命光生电子-空穴对,这归因于卓越的电子供体和接受能力以及可预测的 π-π 堆叠。它们的功效在催化可见光驱动的氧化还原中性 C-H 三氟甲基化,将药物和生物活性分子转化为具有高产率和选择性的三氟甲基化产物。连续流固定床光反应器支持克级合成,并且光催化剂至少通过四轮回收来保持活性。时间依赖性密度泛函理论 (TD-DFT) 和非共价相互作用 (NCI) 分析表明,观察到的性能增强是由于 D-A 系统内受控的光诱导电子转移和链内 π-π 堆叠。
更新日期:2024-10-17
中文翻译:
用于光氧化还原中性三氟甲基化的电子受体控制聚酰亚胺
异质光催化剂比均相系统具有显着优势。然而,它们的应用经常受到自发电子-空穴复合的阻碍,从而破坏了光转换效率。为了解决这个问题,我们的研究引入了一种通过芳香族二酐与苯胺的 N-酰胺化作用的面向多样性的电子-供体-受体 (D-A) 型聚酰亚胺的合成。这些聚酰亚胺表现出分离的 D-A 排列,有助于增强电荷分离、快速电子转移和长寿命光生电子-空穴对,这归因于卓越的电子供体和接受能力以及可预测的 π-π 堆叠。它们的功效在催化可见光驱动的氧化还原中性 C-H 三氟甲基化,将药物和生物活性分子转化为具有高产率和选择性的三氟甲基化产物。连续流固定床光反应器支持克级合成,并且光催化剂至少通过四轮回收来保持活性。时间依赖性密度泛函理论 (TD-DFT) 和非共价相互作用 (NCI) 分析表明,观察到的性能增强是由于 D-A 系统内受控的光诱导电子转移和链内 π-π 堆叠。