当前位置: X-MOL 学术IMA J. Numer. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An exponential stochastic Runge–Kutta type method of order up to 1.5 for SPDEs of Nemytskii-type
IMA Journal of Numerical Analysis ( IF 2.3 ) Pub Date : 2024-10-17 , DOI: 10.1093/imanum/drae064
Claudine von Hallern, Ricarda Missfeldt, Andreas Rössler

For the approximation of solutions for stochastic partial differential equations, numerical methods that obtain a high order of convergence and at the same time involve reasonable computational cost are of particular interest. We therefore propose a new numerical method of exponential stochastic Runge–Kutta type that allows for convergence with a temporal order of up to $\frac{3}/{2}$ and that can be combined with several spatial discretizations. The developed family of derivative-free schemes is tailored to stochastic partial differential equations of Nemytskii-type, i.e., with pointwise multiplicative noise operators. We prove the strong convergence of these schemes in the root mean-square sense and present some numerical examples that reveal the theoretical results.

中文翻译:


一种指数随机 Runge-Kutta 类型阶数方法,最高为 1.5,适用于 Nemytskii 型 SPDE



对于随机偏微分方程的解的近似,获得高收敛阶并同时涉及合理计算成本的数值方法特别值得关注。因此,我们提出了一种新的指数随机 Runge-Kutta 类型的数值方法,该方法允许以高达 $\frac{3}/{2}$ 的时间顺序收敛,并且可以与多个空间离散化相结合。开发的无导数方案系列是为 Nemytskii 类型的随机偏微分方程量身定制的,即具有逐点乘法噪声运算符。我们在均方根意义上证明了这些方案的强收敛性,并提供了一些揭示理论结果的数值示例。
更新日期:2024-10-17
down
wechat
bug