Designs, Codes and Cryptography ( IF 1.4 ) Pub Date : 2024-10-16 , DOI: 10.1007/s10623-024-01497-5 Shuyu Luo, Weiqiong Wang, Qi Zhang, Zhenjie Song
A corrector is a critical component of True Random Number Generators (TRNGs), serving as a post-processing function to reduce statistical weaknesses in raw random sequences. It is important to note that a \(\textit{t}\)-resilient Boolean function is a \(\textit{t}\)-corrector, while the converse is not necessarily true. Building upon the pioneering method introduced by Zhang in 2023 for constructing nonlinear correctors with correction order one greater than resiliency order, this paper presents for the first time two approaches for constructing nonlinear plateaued correctors with correction order at least two greater than resiliency order via Walsh spectral neutralization technique, and the resulting correctors have algebraic degree at least \(\text {2}\). The first approach yields \(\textit{n}\)-variable plateaued correctors with correction order \(\textit{n}-\text {2}\) and resiliency order approximately \(\textit{n}- \text {log}_\text {2} \textit{n}\). The nonlinearity and algebraic degree of the resulting correctors are also analyzed, demonstrating that they meet both Siegenthaler’s and Sarkar-Maitra’s bounds. Another approach based on Walsh spectral neutralization technique for constructing \(\textit{n}\)-variable plateaued correctors is proposed. This approach facilitates the design of semi-bent correctors with algebraic degree \(\lceil \frac{\textit{n}}{\text {2}} \rceil \), correction order \(\lfloor \frac{\textit{n}}{\text {2}} \rfloor -\text {1}\) and resiliency order approximately \( \frac{\textit{n}}{\text {4}} \).
中文翻译:
通过 Walsh 光谱中和技术构建具有高校正阶数和良好非线性的平台校正器
校正器是真随机数生成器 (TRNG) 的关键组件,用作后处理功能,以减少原始随机序列中的统计弱点。需要注意的是,一个 \(\textit{t}\) 个弹性布尔函数是一个 \(\textit{t}\) 个校正器,而反之则不一定是真的。在 Zhang 于 2023 年提出的构建校正阶数大于弹性阶数 1 的非线性校正器的开创性方法的基础上,本文首次提出了两种通过 Walsh 光谱中和技术构建校正阶数至少大于弹性阶数 2 的非线性平台校正器的方法,所得校正器的代数度至少为 \(\text {2}\)。第一种方法产生 \(\textit{n}\) 可变平台校正器,校正顺序为 \(\textit{n}-\text {2}\),弹性顺序约为 \(\textit{n}- \text {log}_\text {2} \textit{n}\)。还分析了所得校正器的非线性和代数度,证明它们同时满足 Siegenthaler 和 Sarkar-Maitra 的边界。提出了另一种基于 Walsh 光谱中和技术构建 \(\textit{n}\) 变量平台校正器的方法。这种方法有助于设计代数阶数 \(\lceil \frac{\textit{n}}{\text {2}} \rceil \)、修正阶数 \(\lfloor \frac{\textit{n}}{\text {2}} \rfloor -\text {1}\) 和弹性阶数约为 \( \frac{\textit{n}}{\text {4}} \) 的半弯曲校正器。