当前位置:
X-MOL 学术
›
Soft Robot.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Biomimetic Adhesive Disc for Robotic Adhesion Sliding Inspired by the Net-Winged Midge Larva.
Soft Robotics ( IF 6.4 ) Pub Date : 2024-10-16 , DOI: 10.1089/soro.2023.0253 Haoyuan Xu,Jiale Zhi,Bohan Chen,Shuyong Zhao,Jie Huang,Chongze Bi,Lei Li,Bochen Tian,Yuchen Liu,Yiyuan Zhang,JinXi Duan,Fuqiang Yang,Xia He,Kun Xu,Ke Wu,Tianmiao Wang,Nguyen Pham,Xilun Ding,Li Wen
Soft Robotics ( IF 6.4 ) Pub Date : 2024-10-16 , DOI: 10.1089/soro.2023.0253 Haoyuan Xu,Jiale Zhi,Bohan Chen,Shuyong Zhao,Jie Huang,Chongze Bi,Lei Li,Bochen Tian,Yuchen Liu,Yiyuan Zhang,JinXi Duan,Fuqiang Yang,Xia He,Kun Xu,Ke Wu,Tianmiao Wang,Nguyen Pham,Xilun Ding,Li Wen
Net-winged midge larvae (Blephariceridae) are known for their remarkable ability to adhere to and crawl on the slippery surfaces of rocks in fast-flowing and turbulent alpine streams, waterfalls, and rivers. This remarkable performance can be attributed to the larvae's powerful ventral suckers. In this article, we first develop a theoretical model of the piston-driven sucker that considers the lubricated state of the contact area. We then implement a piston-driven robotic sucker featuring a V-shaped notch to explore the adhesion-sliding mechanism. Each biomimetic larval sucker has the unique feature of an anterior-facing V-shaped notch on its soft disc rim; it slides along the shear direction while the entire disc surface maintains powerful adhesion on the benthic substrate, just like the biological counterpart. We found that this biomimetic sucker can reversibly transit between "high friction" (4.26 ± 0.34 kPa) and "low friction" (0.41 ± 0.02 kPa) states due to the piston movement, resulting in a frictional enhancement of up to 93.9%. We also elucidate the frictional anisotropy (forward/backward force ratio: 0.81) caused by the V-shaped notch. To demonstrate the robotic application of this adhesion-sliding mechanism, we designed an underwater crawling robot Adhesion Sliding Robot-1 (ASR-1) equipped with two biomimetic ventral suckers. This robot can successfully crawl on a variety of substrates such as curved surfaces, sidewalls, and overhangs and against turbulent water currents with a flow speed of 2.4 m/s. In addition, we implemented a fixed-wing aircraft Adhesion Sliding Robot-2 (ASR-2) featuring midge larva-inspired suckers, enabling transit from rapid water surface gliding to adhesion sliding in an aquatic environment. This adhesion-sliding mechanism inspired by net-winged midge larvae may pave the way for future robots with long-term observation, monitoring, and tracking capabilities in a wide variety of aerial and aquatic environments.
中文翻译:
一种用于机器人粘附滑动的仿生粘合盘,其灵感来自网翼蠓幼虫。
网翅蠓幼虫 (Blephariceridae) 以其在快速流动和湍流的高山溪流、瀑布和河流中粘附和爬行岩石表面的非凡能力而闻名。这种非凡的表现可以归因于幼虫强大的腹侧吸盘。在本文中,我们首先开发了一个活塞驱动吸盘的理论模型,该模型考虑了接触区域的润滑状态。然后,我们实施了一个具有 V 形槽口的活塞驱动机器人吸盘,以探索粘附滑动机制。每个仿生幼虫吸盘都有其独特的特征,即在其柔软的盘状边缘上有一个面向前的 V 形缺口;它沿剪切方向滑动,而整个圆盘表面在底栖基质上保持强大的粘附力,就像生物对应物一样。我们发现,由于活塞运动,这种仿生吸盘可以在“高摩擦”(4.26 ± 0.34 kPa)和“低摩擦”(0.41 ± 0.02 kPa)状态之间可逆地转换,从而产生高达 93.9% 的摩擦增强。我们还阐明了由 V 形缺口引起的摩擦各向异性(前/后力比:0.81)。为了演示这种粘附滑动机构的机器人应用,我们设计了一种水下爬行机器人 Adhesion Sliding Robot-1 (ASR-1),配备了两个仿生腹吸盘。该机器人可以成功地在各种基材上爬行,如曲面、侧壁和悬垂物,以及以 2.4 m/s 的流速对抗湍流。此外,我们还实施了固定翼飞机粘附滑动机器人 2 (ASR-2),其特点是受蠓幼虫启发的吸盘,能够在水环境中从快速水面滑行过渡到粘附滑动。 这种受网翅蠓幼虫启发的粘附滑动机制可能为未来的机器人铺平道路,这些机器人在各种空中和水生环境中具有长期观察、监测和跟踪能力。
更新日期:2024-10-16
中文翻译:
一种用于机器人粘附滑动的仿生粘合盘,其灵感来自网翼蠓幼虫。
网翅蠓幼虫 (Blephariceridae) 以其在快速流动和湍流的高山溪流、瀑布和河流中粘附和爬行岩石表面的非凡能力而闻名。这种非凡的表现可以归因于幼虫强大的腹侧吸盘。在本文中,我们首先开发了一个活塞驱动吸盘的理论模型,该模型考虑了接触区域的润滑状态。然后,我们实施了一个具有 V 形槽口的活塞驱动机器人吸盘,以探索粘附滑动机制。每个仿生幼虫吸盘都有其独特的特征,即在其柔软的盘状边缘上有一个面向前的 V 形缺口;它沿剪切方向滑动,而整个圆盘表面在底栖基质上保持强大的粘附力,就像生物对应物一样。我们发现,由于活塞运动,这种仿生吸盘可以在“高摩擦”(4.26 ± 0.34 kPa)和“低摩擦”(0.41 ± 0.02 kPa)状态之间可逆地转换,从而产生高达 93.9% 的摩擦增强。我们还阐明了由 V 形缺口引起的摩擦各向异性(前/后力比:0.81)。为了演示这种粘附滑动机构的机器人应用,我们设计了一种水下爬行机器人 Adhesion Sliding Robot-1 (ASR-1),配备了两个仿生腹吸盘。该机器人可以成功地在各种基材上爬行,如曲面、侧壁和悬垂物,以及以 2.4 m/s 的流速对抗湍流。此外,我们还实施了固定翼飞机粘附滑动机器人 2 (ASR-2),其特点是受蠓幼虫启发的吸盘,能够在水环境中从快速水面滑行过渡到粘附滑动。 这种受网翅蠓幼虫启发的粘附滑动机制可能为未来的机器人铺平道路,这些机器人在各种空中和水生环境中具有长期观察、监测和跟踪能力。