当前位置:
X-MOL 学术
›
Plant Biotech. J.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Natural variation in the chickpea metabolome under drought stress
Plant Biotechnology Journal ( IF 10.1 ) Pub Date : 2024-10-16 , DOI: 10.1111/pbi.14447 Palak Chaturvedi, Iro Pierides, Cristina López‐Hidalgo, Vanika Garg, Shuang Zhang, Rutwik Barmukh, Anke Bellaire, Jiahang Li, Gert Bachmann, Luis Valledor, Rajeev K. Varshney, Arindam Ghatak, Wolfram Weckwerth
Plant Biotechnology Journal ( IF 10.1 ) Pub Date : 2024-10-16 , DOI: 10.1111/pbi.14447 Palak Chaturvedi, Iro Pierides, Cristina López‐Hidalgo, Vanika Garg, Shuang Zhang, Rutwik Barmukh, Anke Bellaire, Jiahang Li, Gert Bachmann, Luis Valledor, Rajeev K. Varshney, Arindam Ghatak, Wolfram Weckwerth
SummaryChickpea is the world's fourth largest grown legume crop, which significantly contributes to food security by providing calories and dietary protein globally. However, the increased frequency of drought stress has significantly reduced chickpea production in recent years. Here, we have performed a field experiment with 36 diverse chickpea genotypes to evaluate grain yield, photosynthetic activities and molecular traits related to drought stress. For metabolomics analysis, leaf tissue was collected at three time points representing different pod‐filling stages. We identified L‐threonic acid, fructose and sugar alcohols involved in chickpea adaptive drought response within the mid‐pod‐filling stage. A stress susceptibility index for each genotype was calculated to identify tolerance capacity under drought, distributing the 36 genotypes into four categories from best to worst performance. To understand how biochemical mechanisms control different traits for genetic improvement, we performed a differential Jacobian analysis, which unveiled the interplay between various metabolic pathways across three time points, including higher flux towards inositol interconversions, glycolysis for high‐performing genotypes, fumarate to malate conversion, and carbon and nitrogen metabolism perturbations. Metabolic GWAS (mGWAS) analysis uncovered gene candidates involved in glycolysis and MEP pathway corroborating with the differential biochemical Jacobian results. Accordingly, this proposed data analysis strategy bridges the gap from pure statistical association to causal biochemical relations by exploiting natural variation. Our study offers new perspectives on the genetic and metabolic understanding of drought tolerance‐associated diversity in the chickpea metabolome and led to the identification of metabolic control points that can be also tested in other legume crops.
中文翻译:
干旱胁迫下鹰嘴豆代谢组的自然变化
摘要鹰嘴豆是世界第四大豆类作物,通过在全球范围内提供卡路里和膳食蛋白质,为粮食安全做出重大贡献。然而,近年来干旱胁迫频率的增加显着降低了鹰嘴豆产量。在这里,我们对 36 种不同的鹰嘴豆基因型进行了田间实验,以评估与干旱胁迫相关的谷物产量、光合活性和分子性状。对于代谢组学分析,在代表不同豆荚填充阶段的三个时间点收集叶组织。我们确定了 L-苏糖酸、果糖和糖醇参与鹰嘴豆充荚中期适应性干旱反应。计算每种基因型的胁迫易感性指数以确定干旱下的耐受性,将 36 种基因型分为从最好到最差的四类。为了了解生化机制如何控制遗传改良的不同性状,我们进行了差分雅可比分析,揭示了三个时间点各种代谢途径之间的相互作用,包括肌醇相互转化的更高通量、高性能基因型的糖酵解、富马酸盐到苹果酸的转化,以及碳和氮代谢扰动。代谢 GWAS (mGWAS) 分析发现了参与糖酵解和 MEP 通路的候选基因,这与差异生化 Jacobian 结果相吻合。因此,这种提出的数据分析策略通过利用自然变化弥合了从纯统计关联到因果生化关系的差距。 我们的研究为鹰嘴豆代谢组中耐旱相关多样性的遗传和代谢理解提供了新的视角,并导致确定了也可以在其他豆科作物中测试的代谢控制点。
更新日期:2024-10-16
中文翻译:
干旱胁迫下鹰嘴豆代谢组的自然变化
摘要鹰嘴豆是世界第四大豆类作物,通过在全球范围内提供卡路里和膳食蛋白质,为粮食安全做出重大贡献。然而,近年来干旱胁迫频率的增加显着降低了鹰嘴豆产量。在这里,我们对 36 种不同的鹰嘴豆基因型进行了田间实验,以评估与干旱胁迫相关的谷物产量、光合活性和分子性状。对于代谢组学分析,在代表不同豆荚填充阶段的三个时间点收集叶组织。我们确定了 L-苏糖酸、果糖和糖醇参与鹰嘴豆充荚中期适应性干旱反应。计算每种基因型的胁迫易感性指数以确定干旱下的耐受性,将 36 种基因型分为从最好到最差的四类。为了了解生化机制如何控制遗传改良的不同性状,我们进行了差分雅可比分析,揭示了三个时间点各种代谢途径之间的相互作用,包括肌醇相互转化的更高通量、高性能基因型的糖酵解、富马酸盐到苹果酸的转化,以及碳和氮代谢扰动。代谢 GWAS (mGWAS) 分析发现了参与糖酵解和 MEP 通路的候选基因,这与差异生化 Jacobian 结果相吻合。因此,这种提出的数据分析策略通过利用自然变化弥合了从纯统计关联到因果生化关系的差距。 我们的研究为鹰嘴豆代谢组中耐旱相关多样性的遗传和代谢理解提供了新的视角,并导致确定了也可以在其他豆科作物中测试的代谢控制点。