当前位置: X-MOL 学术Ecography › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improving the estimation of the Boyce index using statistical smoothing methods for evaluating species distribution models with presence‐only data
Ecography ( IF 5.4 ) Pub Date : 2024-10-16 , DOI: 10.1111/ecog.07218
Canran Liu, Graeme Newell, Matt White, Josephine Machunter

Species distribution models (SDMs) underpin a wide range of decisions concerning biodiversity. Although SDMs can be built using presence‐only data, rigorous evaluation of these models remains challenging. One evaluation method is the Boyce index (BI), which uses the relative frequencies between presence sites and background sites within a series of bins or moving windows spanning the entire range of predicted values from the SDM. Obtaining accurate estimates of the BI using these methods relies upon having a large number of presences, which is often not feasible, particularly for rare or restricted species that are often the focus of modelling. Wider application of the BI requires a method that can accurately and reliably estimate the BI using small numbers of presence records. In this study, we investigated the effectiveness of five statistical smoothing methods (i.e. thin plate regression splines, cubic regression splines, B‐splines, P‐splines and adaptive smoothers) and the mean of these five methods (denoted as ‘mean') to estimate the BI. We simulated 600 species with varying prevalence and built distribution models using random forest and Maxent methods. For training data, we used two levels for the number of presences (NPtrain: 20 and 500), along with 2 × NPtrain and 10000 random points (i.e. random background sites) for each modelling method. We used the number of presences at four levels (NPbi: 1000, 200, 50 and 10) to investigate its effect, together with 5000 random points to calculate the BI. Our results indicate that the BI estimates from the binning and moving window methods are severely affected by the decrease of NPbi, but all the estimates of the BI from smoothing‐based methods were almost always unbiased for realistic situations. Hence, we recommend these methods for estimating the BI for evaluating SDMs when verified absence data are unavailable.

中文翻译:


使用统计平滑方法改进 Boyce 指数的估计,以仅使用存在数据评估物种分布模型



物种分布模型 (SDM) 是有关生物多样性的广泛决策的基础。尽管 SDM 可以使用仅存在数据构建,但对这些模型的严格评估仍然具有挑战性。一种评估方法是博伊斯指数 (BI),它使用一系列区间或移动窗口中存在站点和背景站点之间的相对频率,这些区间或移动窗口跨越 SDM 的整个预测值范围。使用这些方法获得 BI 的准确估计依赖于拥有大量存在,这通常是不可行的,特别是对于经常成为建模重点的稀有或受限物种。BI 的更广泛应用需要一种方法,该方法能够使用少量状态记录准确可靠地估计 BI。在这项研究中,我们调查了五种统计平滑方法(即薄板回归样条、三次回归样条、B 样条、P 样条和自适应平滑器)的有效性以及这五种方法的平均值(表示为“平均值”)估计 BI。我们模拟了 600 个具有不同流行度的物种,并使用随机森林和 Maxent 方法构建了分布模型。对于训练数据,我们使用两个级别来表示存在数量(NPtrain:20 和 500),以及每种建模方法的 2 × NPtrain 和 10000 个随机点(即随机背景站点)。我们使用四个级别 (NPbi: 1000、200、50 和 10) 的存在数量来研究其效果,并使用 5000 个随机点来计算 BI。我们的结果表明,来自分箱和移动窗口方法的 BI 估计受到 NPbi 减少的严重影响,但对于现实情况,来自基于平滑的方法的所有 BI 估计几乎总是无偏的。 因此,我们建议使用这些方法来估计 BI,以便在已验证的缺勤数据不可用时评估 SDM。
更新日期:2024-10-16
down
wechat
bug