当前位置: X-MOL 学术Environ. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of Rhizosphere Biostimulation on Cd Transport and Isotope Fractionation in Cd-Tolerant and Hyperaccumulating Plants Based on MC-ICP-MS and NanoSIMS
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2024-10-16 , DOI: 10.1021/acs.est.4c03674
Rongfei Wei 1 , Yizhang Liu 2 , Fengxin Kang 1 , Liyan Tian 3 , Qiang Wei 1 , Zhiying Li 4 , Pei Xu 1 , Huiying Hu 1 , Qiyu Tan 5 , Changqiu Zhao 1 , Wei Li 6 , Qingjun Guo 1, 7
Affiliation  

Phytoremediation efficiency can be enhanced by regulating rhizosphere processes, and the Cd isotope is a useful approach for deciphering Cd transport processes in soil–plant systems. However, the effects of adsorption and complexation on Cd isotope fractionation during the rhizosphere processes remain unclear. Here, we cultivated the Cd hyperaccumulator Sedum alfredii and Cd-tolerance Sedum spectabile in three different soils with citric acid applied as a degradable rhizosphere biostimulant. Cellular elemental distributions in the tissues and Cd isotope compositions were determined through NanoSIMS and MC-ICP-MS, respectively. Cd precipitation/adsorption on cell walls and intracellular regional distribution were the main mechanisms of Cd tolerance in S. spectabile. Plant roots became enriched with heavier Cd isotopes relative to the surrounding soils upon increasing secretion of rhizosphere organic acids. This indicates that organic matter with O and N functional groups preferentially chelates heavy Cd isotopes. In addition, Cd isotope fractionation between roots and shoots varies within the three soils, which could be due to the influence of protein and metallothionein contents in roots and leaves. The finding indicates that sulfur-containing ligands preferentially chelate light Cd isotopes. This study suggests that organic ligands play a vital role in Cd isotope fractionation and consequent hyperaccumulation of soil–plant systems.

中文翻译:


基于 MC-ICP-MS 和 NanoSIMS 的根际生物刺激对耐 Cd 和高积累植物 Cd 转运和同位素分馏的影响



通过调节根际过程可以提高植物修复效率,而 Cd 同位素是破译土壤-植物系统中 Cd 运输过程的有用方法。然而,在根际过程中吸附和络合对 Cd 同位素分馏的影响仍不清楚。在这里,我们在三种不同的土壤中培养了 Cd 超蓄积剂 Sedum alfredii 和 Cd-tolerance Sedum spectabile,柠檬酸作为可降解的根际生物刺激剂施用。通过 NanoSIMS 和 MC-ICP-MS 分别测定组织中细胞元素分布和 Cd 同位素组成。Cd 在细胞壁上的沉淀/吸附和细胞内区域分布是 S. spectabile 中 Cd 耐受的主要机制。随着根际有机酸分泌的增加,植物根系相对于周围土壤富含较重的 Cd 同位素。这表明具有 O 和 N 官能团的有机物优先螯合重 Cd 同位素。此外,根和芽之间的 Cd 同位素分馏在三种土壤中有所不同,这可能是由于根和叶中蛋白质和金属硫蛋白含量的影响。该发现表明,含硫配体优先螯合轻 Cd 同位素。这项研究表明,有机配体在 Cd 同位素分馏和随之而来的土壤-植物系统的过度积累中起着至关重要的作用。
更新日期:2024-10-16
down
wechat
bug