当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Three-step thermodynamic vs. two-step kinetics-limited sulfur reactions in all-solid-state sodium batteries
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-10-16 , DOI: 10.1039/d4ee03160a
Tongtai Ji, Qingsong Tu, Yang Zhao, Dominik Wierzbicki, Vincent Plisson, Ying Wang, Jiwei Wang, Kenneth S. Burch, Yong Yang, Hongli Zhu

The investigation of all-solid-state sodium–sulfur batteries (ASSSBs) is still in its early stage, where the intermediates and mechanism of the complex 16-electron conversion reaction of the sulfur cathode remain unclear. Herein, this study presents a comprehensive investigation of the sulfur reaction mechanism in ASSSBs by combining electrochemical measurements, ex situ synchrotron X-ray absorption spectroscopy (XAS), in situ Raman spectroscopy, and first-principles calculations. This work, for the first time, proved that the sulfur cathode undergoes an intrinsic three-step solid–solid redox reaction following the thermodynamic principle under the extreme low rate (C-rates ≤ C/100) or at high temperature (≥ 90 °C), where S8 is first reduced to long-chain polysulfides (Na2S5 and Na2S4), then to Na2S2, and finally to Na2S, resulting in a three-plateau voltage profile. However, under conventional battery test conditions, i.e., temperatures ≤60 °C and C-rates ≥C/20, the Na2S2 phase is bypassed due to kinetic limitations, leading to a direct conversion from Na2S4 to Na2S, resulting in the commonly observed two-plateau voltage profile. First-principles calculations reveal that the formation energy of Na2S2 is only 4 meV per atom lower than the two-phase equilibrium of Na2S4 and Na2S, explaining its absence under kinetics-limited conditions. This work clarified the thermodynamic and kinetics-limited pathways of the 16-electron conversion reaction of the sulfur cathode in ASSSBs, providing valuable insights into the solid-state sodium–sulfur reaction mechanisms.

中文翻译:


全固态钠电池中的三步热力学与两步动力学限制硫反应



全固态钠硫电池 (ASSSB) 的研究仍处于早期阶段,硫阴极的复杂 16 电子转换反应的中间体和机理仍不清楚。在此,本研究通过结合电化学测量、非原位同步加速器 X 射线吸收光谱 (XAS)、位拉曼光谱和第一性原理计算,全面研究了 ASSSB 中的硫反应机理。这项工作首次证明,在极低速率(C-rate ≤ C/100)或高温(≥ 90 °C)下,硫阴极按照热力学原理进行本征的三步固-固氧化还原反应,其中 S8 首先被还原成长链多硫化物(Na2S5 和 Na2S4), 然后是 Na2S2,最后是 Na2S,从而产生三平台电压曲线。然而,在常规电池测试条件下,温度 ≤60 °C 和 C 倍率 ≥C/20),由于动力学限制,Na2S2 相被旁路,导致从 Na2S4 直接转换为 Na2S,导致通常观察到的双平台电压曲线。 第一性原理计算表明,Na2S2 的形成能每原子仅比 Na2S4 和 Na2S 的两相平衡低 4 meV,这解释了它在动力学受限条件下的缺失。这项工作阐明了 ASSSBs 中硫阴极 16 电子转化反应的热力学和动力学限制途径,为固态钠-硫反应机理提供了有价值的见解。
更新日期:2024-10-16
down
wechat
bug