当前位置: X-MOL 学术Hortic. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Diversity and interactions of rhizobacteria determine multinutrient traits in tomato host plants under nitrogen and water disturbances
Horticulture Research ( IF 7.6 ) Pub Date : 2024-10-15 , DOI: 10.1093/hr/uhae290
Wenxuan Shi, Junjie Guo, Xinxuan Yu, Zhixing Li, Boyang Weng, Danxia Wang, Shihao Su, Yufei Sun, Jinfang Tan, Ruohan Xie

Coevolution within the plant holobiont extends the capacity of host plants for nutrient acquisition and stress resistance. However, the role of the rhizospheric microbiota in maintaining multinutrient utilization (i.e., multinutrient traits) in the host remains to be elucidated. Multinutrient cycling index (MNC), analogous to the widely used multifunctionality index, provides a straightforward and interpretable measure of the multinutrient traits in host plants. Using tomato as a model plant, we characterized MNC (based on multiple aboveground nutrient contents) in host plants under different nitrogen and water supply regimes and explored the associations between rhizospheric bacterial community assemblages and host-plant multinutrient profiles. Rhizosphere bacterial community diversity, quantitative abundance, predicted function, and key topological features of the co-occurrence network were more sensitive to water supply than to nitrogen supply. A core bacteriome comprising 61 genera, such as Candidatus Koribacter and Streptomyces, persisted across different habitats and served as a key predictor of host-plant nutrient uptake. The MNC index increased with greater diversity and higher core taxon abundance in the rhizobacterial community, while decreasing with higher average degree and graph density of rhizobacterial co-occurrence network. Multinutrient absorption by host plants was primarily regulated by community diversity and rhizobacterial network complexity under the interaction of nitrogen and water. The high biodiversity and complex species interactions of the rhizospheric bacteriome play crucial roles in host-plant performance. This study supports the development of rhizosphere microbiome engineering, facilitating effective manipulation of the microbiome for enhanced plant benefits, which supports sustainable agricultural practices and plant health.

中文翻译:


根际细菌的多样性和相互作用决定了番茄寄主植物在氮和水干扰下的多营养性状



植物全息体内的协同进化扩展了寄主植物的养分获取和抗逆能力。然而,根际微生物群在维持宿主多种营养物质利用(即多种营养物质性状)中的作用仍有待阐明。多营养物质循环指数 (MNC) 类似于广泛使用的多功能指数,为寄主植物的多营养物质性状提供了一种简单且可解释的测量方法。以番茄为模式植物,我们表征了不同氮和水供应制度下寄主植物的 MNC(基于多种地上营养成分),并探讨了根际细菌群落组合与寄主植物多营养物谱之间的关联。根际细菌群落多样性、数量丰度、预测功能和共生网络的关键拓扑特征对供水比对氮供应更敏感。一个由 61 个属组成的核心细菌组,如 Candidatus Koribacter 和 Streptomyces,在不同的栖息地持续存在,是寄主植物养分吸收的关键预测因子。MNC 指数随着根细菌群落多样性的增加和核心分类群丰度的增加而增加,而随着根细菌共生网络的平均程度和图密度的增加而降低。寄主植物对多种养分的吸收主要受群落多样性和根际细菌网络复杂性在氮和水互作作用下的调节。根际细菌组的高生物多样性和复杂的物种相互作用在寄主植物性能中起着至关重要的作用。 本研究支持根际微生物组工程的发展,促进微生物组的有效操纵以增强植物益处,从而支持可持续农业实践和植物健康。
更新日期:2024-10-15
down
wechat
bug