当前位置:
X-MOL 学术
›
New Media & Society
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Analyzing narrative contagion through digital storytelling in social media conversations: An AI-powered computational approach
New Media & Society ( IF 4.5 ) Pub Date : 2024-10-15 , DOI: 10.1177/14614448241285445 Xinyan Zhao, Zexin Ma, Rong Ma
New Media & Society ( IF 4.5 ) Pub Date : 2024-10-15 , DOI: 10.1177/14614448241285445 Xinyan Zhao, Zexin Ma, Rong Ma
Despite the growing popularity of digital narratives, research on digital storytelling and its spread through social media interactions remains limited. Inspired by the social contagion theory, we introduce the concept of narrative contagion—where a story shared by a person or organization prompts others to share their stories—and investigate its process and outcome in online cancer communities. Utilizing a large dataset of 849 Facebook posts, 47,291 comments, and 14,466 replies, our artificial intelligence (AI)-based computational analysis provides evidence for narrative contagion among individual users in organization-hosted cancer communities on Facebook. It also reveals different organizational message characteristics, such as emotional arousal, post topic, and request for storytelling, that affect user storytelling and emotional support in comments and replies. Our results contribute to a deeper understanding of digital storytelling and its collective dynamics in online communities.
中文翻译:
通过社交媒体对话中的数字叙事来分析叙事传染:一种 AI 驱动的计算方法
尽管数字叙事越来越受欢迎,但关于数字叙事及其通过社交媒体互动传播的研究仍然有限。受社会传染理论的启发,我们引入了叙事传染的概念,即一个人或组织分享的故事会促使其他人分享他们的故事,并在在线癌症社区中研究其过程和结果。利用包含 849 个 Facebook 帖子、47,291 条评论和 14,466 条回复的大型数据集,我们基于人工智能 (AI) 的计算分析为 Facebook 上组织托管的癌症社区中个人用户的叙事传染提供了证据。它还揭示了不同的组织消息特征,例如情绪唤醒、帖子主题和讲故事请求,这些特征会影响用户讲故事和评论和回复中的情感支持。我们的结果有助于更深入地理解数字叙事及其在在线社区中的集体动态。
更新日期:2024-10-15
中文翻译:
通过社交媒体对话中的数字叙事来分析叙事传染:一种 AI 驱动的计算方法
尽管数字叙事越来越受欢迎,但关于数字叙事及其通过社交媒体互动传播的研究仍然有限。受社会传染理论的启发,我们引入了叙事传染的概念,即一个人或组织分享的故事会促使其他人分享他们的故事,并在在线癌症社区中研究其过程和结果。利用包含 849 个 Facebook 帖子、47,291 条评论和 14,466 条回复的大型数据集,我们基于人工智能 (AI) 的计算分析为 Facebook 上组织托管的癌症社区中个人用户的叙事传染提供了证据。它还揭示了不同的组织消息特征,例如情绪唤醒、帖子主题和讲故事请求,这些特征会影响用户讲故事和评论和回复中的情感支持。我们的结果有助于更深入地理解数字叙事及其在在线社区中的集体动态。