当前位置: X-MOL 学术Gut › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
QUAIDE - Quality assessment of AI preclinical studies in diagnostic endoscopy
Gut ( IF 23.0 ) Pub Date : 2024-10-15 , DOI: 10.1136/gutjnl-2024-332820
Giulio Antonelli, Diogo Libanio, Albert Jeroen De Groof, Fons van der Sommen, Pietro Mascagni, Pieter Sinonquel, Mohamed Abdelrahim, Omer Ahmad, Tyler Berzin, Pradeep Bhandari, Michael Bretthauer, Miguel Coimbra, Evelien Dekker, Alanna Ebigbo, Tom Eelbode, Leonardo Frazzoni, Seth A Gross, Ryu Ishihara, Michal Filip Kaminski, Helmut Messmann, Yuichi Mori, Nicolas Padoy, Sravanthi Parasa, Nastazja Dagny Pilonis, Francesco Renna, Alessandro Repici, Cem Simsek, Marco Spadaccini, Raf Bisschops, Jacques J G H M Bergman, Cesare Hassan, Mario Dinis Ribeiro

Artificial intelligence (AI) holds significant potential for enhancing quality of gastrointestinal (GI) endoscopy, but the adoption of AI in clinical practice is hampered by the lack of rigorous standardisation and development methodology ensuring generalisability. The aim of the Quality Assessment of pre-clinical AI studies in Diagnostic Endoscopy (QUAIDE) Explanation and Checklist was to develop recommendations for standardised design and reporting of preclinical AI studies in GI endoscopy. The recommendations were developed based on a formal consensus approach with an international multidisciplinary panel of 32 experts among endoscopists and computer scientists. The Delphi methodology was employed to achieve consensus on statements, with a predetermined threshold of 80% agreement. A maximum three rounds of voting were permitted. Consensus was reached on 18 key recommendations, covering 6 key domains: data acquisition and annotation (6 statements), outcome reporting (3 statements), experimental setup and algorithm architecture (4 statements) and result presentation and interpretation (5 statements). QUAIDE provides recommendations on how to properly design (1. Methods, statements 1–14), present results (2. Results, statements 15–16) and integrate and interpret the obtained results (3. Discussion, statements 17–18). The QUAIDE framework offers practical guidance for authors, readers, editors and reviewers involved in AI preclinical studies in GI endoscopy, aiming at improving design and reporting, thereby promoting research standardisation and accelerating the translation of AI innovations into clinical practice.

中文翻译:


QUAIDE - 诊断性内窥镜检查 AI 临床前研究的质量评估



人工智能 (AI) 在提高胃肠道 (GI) 内窥镜检查质量方面具有巨大潜力,但由于缺乏确保通用性的严格标准化和开发方法,人工智能在临床实践中的采用受到阻碍。诊断内窥镜检查中临床前 AI 研究的质量评估 (QUAIDE) 解释和检查表的目的是为胃肠道内窥镜临床前 AI 研究的标准化设计和报告提出建议。这些建议是根据正式的共识方法制定的,该小组由内窥镜医师和计算机科学家中的 32 名专家组成。采用 Delphi 方法对陈述达成共识,预定阈值为 80% 一致性。最多允许进行三轮投票。对 18 项关键建议达成共识,涵盖 6 个关键领域:数据采集和注释(6 项声明)、结果报告(3 项声明)、实验设置和算法架构(4 项声明)以及结果呈现和解释(5 项声明)。QUAIDE 提供了有关如何正确设计 (1.方法,陈述 1-14),呈现结果 (2.结果,陈述 15-16)并整合和解释获得的结果 (3.讨论,陈述 17-18)。QUAIDE 框架为参与胃肠道内窥镜 AI 临床前研究的作者、读者、编辑和审稿人提供实用指导,旨在改进设计和报告,从而促进研究标准化并加速 AI 创新向临床实践的转化。
更新日期:2024-10-16
down
wechat
bug