npj Digital Medicine ( IF 12.4 ) Pub Date : 2024-10-15 , DOI: 10.1038/s41746-024-01269-4 I-Min Chiu, Tien-Yu Chen, You-Cheng Zheng, Xin-Hong Lin, Fu-Jen Cheng, David Ouyang, Chi-Yung Cheng
Abdominal aortic aneurysm (AAA) often remains undetected until rupture due to limited access to diagnostic ultrasound. This trial evaluated a deep learning (DL) algorithm to guide AAA screening by novice nurses with no prior ultrasonography experience. Ten nurses performed 15 scans each on patients over 65, assisted by a DL object detection algorithm, and compared against physician-performed scans. Ultrasound scan quality, assessed by three blinded expert physicians, was the primary outcome. Among 184 patients, DL-guided novices achieved adequate scan quality in 87.5% of cases, comparable to the 91.3% by physicians (p = 0.310). The DL model predicted AAA with an AUC of 0.975, 100% sensitivity, and 97.8% specificity, with a mean absolute error of 2.8 mm in predicting aortic width compared to physicians. This study demonstrates that DL-guided POCUS has the potential to democratize AAA screening, offering performance comparable to experienced physicians and improving early detection.
中文翻译:
深度学习超声筛查腹主动脉瘤的前瞻性临床评价
由于诊断性超声检查的机会有限,腹主动脉瘤 (AAA) 在破裂之前通常未被发现。该试验评估了一种深度学习 (DL) 算法,以指导之前没有超声检查经验的新手护士进行 AAA 筛查。10 名护士在 DL 对象检测算法的协助下,对 65 岁以上的患者每人进行了 15 次扫描,并与医生进行的扫描进行了比较。由 3 名盲法专家医生评估的超声扫描质量是主要结局。在 184 名患者中,DL 指导的新手在 87.5% 的病例中取得了足够的扫描质量,与医生的 91.3% 相当 (p = 0.310)。DL 模型预测 AAA 的 AUC 为 0.975,灵敏度为 100%,特异性为 97.8%,与医生相比,预测主动脉宽度的平均绝对误差为 2.8 mm。这项研究表明,DL 引导的 POCUS 有可能使 AAA 筛查大众化,提供与经验丰富的医生相当的性能并改善早期检测。