当前位置:
X-MOL 学术
›
Geom. Funct. Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Geometric Regularity of Blow-up Limits of the Kähler-Ricci Flow
Geometric and Functional Analysis ( IF 2.4 ) Pub Date : 2024-10-16 , DOI: 10.1007/s00039-024-00694-7 Max Hallgren, Wangjian Jian, Jian Song, Gang Tian
中文翻译:
Kähler-Ricci 流爆炸极限的几何规律
更新日期:2024-10-16
Geometric and Functional Analysis ( IF 2.4 ) Pub Date : 2024-10-16 , DOI: 10.1007/s00039-024-00694-7 Max Hallgren, Wangjian Jian, Jian Song, Gang Tian
We establish geometric regularity for Type I blow-up limits of the Kähler-Ricci flow based at any sequence of Ricci vertices. As a consequence, the limiting flow is continuous in time in both Gromov-Hausdorff and Gromov-W1 distances. In particular, the singular sets of each time slice and its tangent cones are closed and of codimension no less than 4.
中文翻译:
Kähler-Ricci 流爆炸极限的几何规律
我们根据 Ricci 顶点的任何序列为 Kähler-Ricci 流的 I 型放大极限建立了几何规则。因此,极限流在 Gromov-Hausdorff 和 Gromov-W 1 距离上都是连续的。特别是,每个时间片及其切线圆锥的奇异集是闭合的,并且共维数不小于 4。