General Relativity and Gravitation ( IF 2.1 ) Pub Date : 2024-10-15 , DOI: 10.1007/s10714-024-03310-z A. Oliveira Castro Júnior, G. Oliveira-Neto, G. A. Monerat
In the present work, we study the initial moments of a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker (FLRW) cosmological model, considering Hořava-Lifshitz (HL) as the gravitational theory. The matter content of the model is a radiation perfect fluid. In order to study the initial moments of the universe in the present model, we consider quantum cosmology. More precisely the quantum mechanical tunneling mechanism. In that mechanism, the universe appears after the wavefunction associated to that universe tunnels through a potential barrier. We started studying the classical model. We draw the phase portrait of the model and identify qualitatively all types of dynamical behaviors associated to it. Then, we write the Hamiltonian of the model and apply the Dirac quantization procedure to quantize a constrained theory. We find the appropriate Wheeler-DeWitt equation and solve it using the Wentzel-Kramers-Brillouin (WKB) approximation. Using the WKB solution, to the Wheeler-DeWitt equation, we compute the tunneling probabilities for the birth of that universe (\(TP_{WKB}\)). Since the WKB wavefunction depends on the radiation energy (E) and the free parameters coming from the HL theory (\(g_c\), \(g_r\), \(g_s\), \(g_\Lambda \)), we compute the behavior of \(TP_{WKB}\) as a function of E and all the HL’s parameters \(g_c\), \(g_r\), \(g_s\), \(g_\Lambda \). As a new result, due to the HL theory, we notice that, in the present model, the universe cannot tunnel through the barrier close to the origin. It happens because that tunneling probability is nil. Therefore, here, the universe cannot starts from a zero size and is free from the big bang singularity.
中文翻译:
Hořava-Lifshitz 宇宙学模型的最初时刻
在这项工作中,我们研究了齐次和各向同性的 Friedmann-Lemaître-Robertson-Walker (FLRW) 宇宙学模型的初始时刻,将 Hořava-Lifshitz (HL) 视为引力理论。模型的物质含量是辐射完美流体。为了在当前模型中研究宇宙的初始时刻,我们考虑了量子宇宙学。更准确地说,量子力学隧穿机制。在这种机制中,与该宇宙相关的波函数穿过潜在障碍后,宇宙出现。我们开始研究经典模型。我们绘制了模型的相位图,并定性地识别了与之相关的所有类型的动力学行为。然后,我们编写模型的哈密顿量,并应用 Dirac 量化程序来量化约束理论。我们找到合适的 Wheeler-DeWitt 方程,并使用 Wentzel-Kramers-Brillouin (WKB) 近似求解。使用 WKB 解,根据 Wheeler-DeWitt 方程,我们计算了该宇宙诞生的隧穿概率 (\(TP_{WKB}\))。由于 WKB 波函数取决于辐射能量 (E) 和来自 HL 理论的自由参数(\(g_c\), \(g_r\), \(g_s\), \(g_\Lambda \)),我们计算 \(TP_{WKB}\) 的行为作为 E 和所有 HL 参数 \(g_c\)、\(g_r\)、\(g_s\)、\(g_\Lambda \) 的函数.作为一个新的结果,由于 HL 理论,我们注意到,在目前的模型中,宇宙无法穿过靠近原点的屏障。发生这种情况是因为隧道概率为零。 因此,在这里,宇宙不可能从零大小开始,并且没有大爆炸奇点。