当前位置: X-MOL 学术J. Comput. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-throughput molecular simulations of SARS-CoV-2 receptor binding domain mutants quantify correlations between dynamic fluctuations and protein expression
Journal of Computational Chemistry ( IF 3.4 ) Pub Date : 2024-10-15 , DOI: 10.1002/jcc.27512
Victor Ovchinnikov, Martin Karplus

Prediction of protein fitness from computational modeling is an area of active research in rational protein design. Here, we investigated whether protein fluctuations computed from molecular dynamics simulations can be used to predict the expression levels of SARS-CoV-2 receptor binding domain (RBD) mutants determined in the deep mutational scanning experiment of Starr et al. [Science (New York, N.Y.) 2022, 377, 420] Specifically, we performed more than 0.7 milliseconds of molecular dynamics (MD) simulations of 557 mutant RBDs in triplicate to achieve statistical significance under various simulation conditions. Our results show modest but significant anticorrelation in the range [−0.4, −0.3] between expression and RBD protein flexibility. A simple linear regression machine learning model achieved correlation coefficients in the range [0.7, 0.8], thus outperforming MD-based models, but required about 25 mutations at each residue position for training.

中文翻译:


SARS-CoV-2 受体结合域突变体的高通量分子模拟量化了动态波动与蛋白质表达之间的相关性



从计算建模预测蛋白质适应性是理性蛋白质设计中积极研究的一个领域。在这里,我们研究了从分子动力学模拟计算的蛋白质波动是否可用于预测 Starr 等人的深度突变扫描实验中确定的 SARS-CoV-2 受体结合域 (RBD) 突变体的表达水平 [科学(纽约,纽约州)2022, 377, 420]具体来说,我们对 557 个突变体 RBD 进行了超过 0.7 毫秒的分子动力学 (MD) 模拟,一式三份,以达到统计显着性各种模拟条件。我们的结果表明,表达和 RBD 蛋白灵活性之间的 [-0.4, -0.3] 范围内存在适度但显着的反相关。简单的线性回归机器学习模型实现了 [0.7, 0.8] 范围内的相关系数,因此优于基于 MD 的模型,但需要在每个残基位置进行大约 25 个突变进行训练。
更新日期:2024-10-15
down
wechat
bug