当前位置:
X-MOL 学术
›
J. Comput. Graph. Stat.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Scalable Clustering: Large Scale Unsupervised Learning of Gaussian Mixture Models with Outliers
Journal of Computational and Graphical Statistics ( IF 1.4 ) Pub Date : 2024-10-14 , DOI: 10.1080/10618600.2024.2414889 Yijia Zhou, Kyle A. Gallivan, Adrian Barbu
Journal of Computational and Graphical Statistics ( IF 1.4 ) Pub Date : 2024-10-14 , DOI: 10.1080/10618600.2024.2414889 Yijia Zhou, Kyle A. Gallivan, Adrian Barbu
Clustering is a widely used technique with a long and rich history in a variety of areas. However, most existing algorithms do not scale well to large datasets, or are missing theoretical guarantee...
中文翻译:
可扩展聚类:具有异常值的高斯混合模型的大规模无监督学习
聚类是一种广泛使用的技术,在各个领域都有悠久而丰富的历史。然而,大多数现有算法不能很好地扩展到大型数据集,或者缺乏理论保证......
更新日期:2024-10-16
中文翻译:
可扩展聚类:具有异常值的高斯混合模型的大规模无监督学习
聚类是一种广泛使用的技术,在各个领域都有悠久而丰富的历史。然而,大多数现有算法不能很好地扩展到大型数据集,或者缺乏理论保证......