当前位置:
X-MOL 学术
›
Nano-Micro Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Rapid Adaptation Approach for Dynamic Air-Writing Recognition Using Wearable Wristbands with Self-Supervised Contrastive Learning
Nano-Micro Letters ( IF 31.6 ) Pub Date : 2024-10-16 , DOI: 10.1007/s40820-024-01545-8 Yunjian Guo, Kunpeng Li, Wei Yue, Nam-Young Kim, Yang Li, Guozhen Shen, Jong-Chul Lee
中文翻译:
一种使用具有自监督对比学习功能的可穿戴腕带进行动态 air-writing 识别的快速适应方法
更新日期:2024-10-16
Nano-Micro Letters ( IF 31.6 ) Pub Date : 2024-10-16 , DOI: 10.1007/s40820-024-01545-8 Yunjian Guo, Kunpeng Li, Wei Yue, Nam-Young Kim, Yang Li, Guozhen Shen, Jong-Chul Lee
-
Utilizing self-supervised learning, the proposed wearable wristband with a four-channel sensing array and wireless transmission module is developed for tracking air-writing and dynamic gestures.
-
The model can learn prior features from unlabeled signals of random wrist movements, significantly reducing the dependency on extensive labeled data for training.
-
The wristband system rapidly adapts to multiple scenarios after fine-tuning using few-shot data, enhancing user interaction through natural and intuitive communication.
中文翻译:
一种使用具有自监督对比学习功能的可穿戴腕带进行动态 air-writing 识别的快速适应方法
-
利用自我监督学习,开发了具有四通道传感阵列和无线传输模块的可穿戴腕带,用于跟踪空中书写和动态手势。 -
该模型可以从手腕随机运动的未标记信号中学习先前的特征,从而显着减少对大量标记数据的依赖以进行训练。 -
腕带系统使用少量镜头数据进行微调后,可快速适应多种场景,通过自然直观的通信增强用户交互。