European Journal of Nuclear Medicine and Molecular Imaging ( IF 8.6 ) Pub Date : 2024-10-15 , DOI: 10.1007/s00259-024-06948-8 Sang-Geon Cho, Jong Eun Lee, Kyung Hoon Cho, Ki-Seong Park, Jahae Kim, Jang Bae Moon, Kang Bin Kim, Ju Han Kim, Ho-Chun Song
Purpose
This study aimed to test whether the coronary artery calcium (CAC) burden on attenuation correction computed tomography (CTac), measured using artificial intelligence (AI-CACac), correlates with coronary flow capacity (CFC) and prognosis.
Materials and methods
We retrospectively enrolled patients who underwent [13N]ammonia positron emission tomography (PET) between September 2021 and May 2023. CTac data were obtained from all the patients. Patients with (history of) acute coronary syndrome, previous coronary stent insertion or bypass surgery, or left ventricular ejection fraction < 40% were excluded. The total Agatston score measured using a dedicated AI-CAC quantification software on CTac was defined as AI-CACac. The correlations between AI-CACac and PET-measured myocardial blood flow (MBF) and CFC and significant ischaemia (summed difference score ≥ 7) were analysed. Their prognostic values for major cardiovascular events (MACE), including death, nonfatal myocardial infarction, hospitalisation due to angina pectoris or heart failure, and late (> 90 days) revascularisation, were also evaluated.
Results
In total, 289 patients were included in this study. Significant negative correlations were found between AI-CACac and stress MBF (ρ = −0.363, p < 0.001) and MFR (ρ = −0.305, p < 0.001). AI-CACac > 10 was associated with a significantly higher prevalence of impaired CFC (31% vs. 7%, p < 0.001) and significant ischaemia (20% vs. 7%), which remained significant after adjusting for other risk factors. MACE occurred in 49 (17%) patients (median follow-up, 284 days), and those who experienced MACE had significantly higher AI-CACac (median, 166 vs. 56; p = 0.039). However, multivariable analysis revealed an independent prognostic association among impaired CFC, diabetes, smoking, but not for AI-CACac.
Conclusion
AI-measured CACac correlates well with PET-measured MBF and CFC, but its prognostic significance requires further validation.
中文翻译:
使用人工智能进行衰减校正计算机断层扫描的冠状动脉钙化测量:与冠状动脉血流容量和预后的相关性
目的
本研究旨在测试使用人工智能 (AI-CACac) 测量的冠状动脉钙化 (CAC) 对衰减校正计算机断层扫描 (CTac) 的负担是否与冠状动脉血流量 (CFC) 和预后相关。
材料和方法
我们回顾性纳入了 2021 年 9 月至 2023 年 5 月期间接受 [13N] 氨正电子发射断层扫描 (PET) 的患者。从所有患者那里获得 CTac 数据。排除有急性冠脉综合征 (病史) 、既往冠状动脉支架置入或搭桥手术或左心室射血分数 < 40% 的患者。在 CTac 上使用专用 AI-CAC 量化软件测量的 Agatston 总分定义为 AI-CACac。分析 AI-CACac 与 PET 测量的心肌血流量 (MBF) 和 CFC 以及显著缺血之间的相关性 (总差评分 ≥ 7)。还评估了他们对主要心血管事件 (MACE) 的预后价值,包括死亡、非致死性心肌梗死、因心绞痛或心力衰竭住院以及晚期 (x3E 90 天) 血运重建。
结果
本研究共纳入 289 名患者。AI-CACac 与应力 MBF (ρ = -0.363,p < 0.001 ) 和 MFR (ρ = -0.305,p < 0.001) 之间存在显著的负相关。AI-CACac > 10 与 CFC 受损患病率 (31% vs. 7%,p < 0.001) 和严重缺血 (20% vs. 7%) 相关,在调整其他危险因素后仍然显著。MACE 发生在 49 例 (17%) 患者中 (中位随访,284 天),经历过 MACE 的患者 AI-CACac 显著更高 (中位,166 vs. 56;p = 0.039)。然而,多变量分析显示 CFC 受损、糖尿病、吸烟之间存在独立的预后关联,但 AI-CACac 则没有。
结论
AI 测量的 CACac 与 PET 测量的 MBF 和 CFC 密切相关,但其预后意义需要进一步验证。