当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High Zn(002)-preferential orientation enabled by a proton additive for dendrite-free zinc anodes
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-10-16 , DOI: 10.1039/d4ee03276d Yating Li, Xiaohui Ma, Xi Zhang, Fengyi Zhang, Qiong Wang, Qiang Guo, Jinlong Liu, Yonggang Wang, Jianhang Huang, Yongyao Xia
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-10-16 , DOI: 10.1039/d4ee03276d Yating Li, Xiaohui Ma, Xi Zhang, Fengyi Zhang, Qiong Wang, Qiang Guo, Jinlong Liu, Yonggang Wang, Jianhang Huang, Yongyao Xia
Although zinc-based batteries have long been considered as one of the most promising technologies for large-scale energy storage, their development has been seriously hindered by dendrite formation. Constructing highly (002)-textured Zn electrodes to guide Zn deposition has been demonstrated as an effective approach for dendrite suppression due to the lowest surface energy and closest packing morphology of the Zn(002) texture. Herein, a cation additive (proton) is reported for the first time as a universal strategy to effectively promote the formation of Zn(002) texture. A high Zn(002)-preferential orientation was obtained in a simple ZnSO4 + H2SO4 electrolyte, which effectively suppressed the formation of dendrite and side reactions. The Zn(002)||Zn(002) symmetric cell can cycle stably for an unprecedented 1900 hours under a practical deposition capacity of 5 mA h cm−2 with a current density of 5 mA cm−2. The morphology evolution and formation mechanism of Zn (002) texture in electrolytes with a proton additive were also systematically investigated. This cation texturing strategy may provide novel insights into constructing high (002)-preferential orientation of metallic Zn.
中文翻译:
通过质子添加剂实现高 Zn(002) 优先取向,用于无枝晶锌阳极
尽管锌基电池长期以来一直被认为是最有前途的大规模储能技术之一,但枝晶的形成严重阻碍了其发展。由于 Zn(002) 织构的最低表面能和最接近的堆积形态,构建高度织构的 Zn 电极以引导 Zn 沉积已被证明是一种有效的枝晶抑制方法。在此,阳离子添加剂 (proton) 首次被报道为有效促进 Zn(002) 织构形成的通用策略。在简单的 ZnSO4 + H2SO4 电解质中获得高 Zn(002) 优先取向,有效抑制了枝晶和副反应的形成。The Zn(002)||Zn(002) 对称电池可以在 5 mA h cm-2 的实际沉积容量和 5 mA cm-2 的电流密度下稳定循环 1900 小时,这是前所未有的。还系统研究了含有质子添加剂的电解质中 Zn (002) 织构的形态演变和形成机制。这种阳离子纹理化策略可能为构建金属 Zn 的高 (002) 优先取向提供新的见解。
更新日期:2024-10-16
中文翻译:
通过质子添加剂实现高 Zn(002) 优先取向,用于无枝晶锌阳极
尽管锌基电池长期以来一直被认为是最有前途的大规模储能技术之一,但枝晶的形成严重阻碍了其发展。由于 Zn(002) 织构的最低表面能和最接近的堆积形态,构建高度织构的 Zn 电极以引导 Zn 沉积已被证明是一种有效的枝晶抑制方法。在此,阳离子添加剂 (proton) 首次被报道为有效促进 Zn(002) 织构形成的通用策略。在简单的 ZnSO4 + H2SO4 电解质中获得高 Zn(002) 优先取向,有效抑制了枝晶和副反应的形成。The Zn(002)||Zn(002) 对称电池可以在 5 mA h cm-2 的实际沉积容量和 5 mA cm-2 的电流密度下稳定循环 1900 小时,这是前所未有的。还系统研究了含有质子添加剂的电解质中 Zn (002) 织构的形态演变和形成机制。这种阳离子纹理化策略可能为构建金属 Zn 的高 (002) 优先取向提供新的见解。