当前位置:
X-MOL 学术
›
ACS Energy Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dual-Function ZnO-Li3TaO4 Surface Modification of Single-Crystalline Ni-Rich Cathodes for All-Solid-State Batteries
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-10-15 , DOI: 10.1021/acsenergylett.4c02016 Jun Pyo Son, Jae-Seung Kim, Chang-Gi Lee, Juhyoun Park, Jong Seok Kim, Se-Ho Kim, Baptiste Gault, Dong-Hwa Seo, Yoon Seok Jung
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-10-15 , DOI: 10.1021/acsenergylett.4c02016 Jun Pyo Son, Jae-Seung Kim, Chang-Gi Lee, Juhyoun Park, Jong Seok Kim, Se-Ho Kim, Baptiste Gault, Dong-Hwa Seo, Yoon Seok Jung
Herein, we introduce a ZnO–Li3TaO4 composite coating designed to stabilize single-crystalline LiNi0.95Co0.03Mn0.015Al0.005O2 (sNCMA) in ASSBs with Li6PS5Cl. This dual-function coating establishes a Ta-rich surface layer and Zn-doped near-surface regions, as verified by detailed analyses, including atom probe tomography and transmission electron microscopy. The ZnO-Li3TaO4 coating markedly enhances both interfacial and structural stabilities, showcasing an exceptional performance in sNCMA|Li6PS5Cl|(Li–In) cells at 30 °C (initial discharge capacity of 196 mA h g–1 with 82.7% capacity retention after 1000 cycles), exceeding the performance of both uncoated or only Li3TaO4-coated sNCMA (only 82.5 or 84.2%, respectively, after 200 cycles). The protective role of ZnO-Li3TaO4 is corroborated by electrochemical impedance spectroscopy and ex situ X-ray photoelectron spectroscopy. Finally, density functional theory calculations and comparative tests with oxidatively inert Li2ZrCl6 catholytes elucidate the enhanced performance mechanism, specifically, the suppression of Ni2+ migration by Zn doping, emphasizing the importance of cathode structural stability in all-solid-state batteries.
中文翻译:
全固态电池单晶富镍正极的双功能 ZnO-Li3TaO4 表面改性
在本文中,我们介绍了一种 ZnO-Li3TaO4 复合涂层,旨在稳定含 Li6PS5Cl 的 ASSB 中的单晶 LiNi0.95Co0.03Mn0.015Al0.005O2 (sNCMA)。这种双重功能涂层建立了富含 Ta 的表面层和掺锌的近表面区域,这通过包括原子探针断层扫描和透射电子显微镜在内的详细分析得到了验证。ZnO-Li3TaO4 涂层显著提高了界面和结构稳定性,在 sNCMA|Li6PS5Cl|(Li-In)电池在 30 °C(初始放电容量为 196 mA h g–1,1000 次循环后容量保持率为 82.7%),超过了未涂层或仅 Li3TaO4 涂层 sNCMA 的性能(分别仅为 82.5% 或 84.2%,循环 200 次后)。ZnO-Li3TaO4 的保护作用通过电化学阻抗谱和异位 X 射线光电子能谱得到证实。最后,密度泛函理论计算和与氧化惰性 Li2ZrCl6 阴极化合物的比较测试阐明了增强性能的机制,特别是 Zn 掺杂抑制 Ni2+ 迁移,强调了正极结构稳定性在全固态电池中的重要性。
更新日期:2024-10-15
中文翻译:
全固态电池单晶富镍正极的双功能 ZnO-Li3TaO4 表面改性
在本文中,我们介绍了一种 ZnO-Li3TaO4 复合涂层,旨在稳定含 Li6PS5Cl 的 ASSB 中的单晶 LiNi0.95Co0.03Mn0.015Al0.005O2 (sNCMA)。这种双重功能涂层建立了富含 Ta 的表面层和掺锌的近表面区域,这通过包括原子探针断层扫描和透射电子显微镜在内的详细分析得到了验证。ZnO-Li3TaO4 涂层显著提高了界面和结构稳定性,在 sNCMA|Li6PS5Cl|(Li-In)电池在 30 °C(初始放电容量为 196 mA h g–1,1000 次循环后容量保持率为 82.7%),超过了未涂层或仅 Li3TaO4 涂层 sNCMA 的性能(分别仅为 82.5% 或 84.2%,循环 200 次后)。ZnO-Li3TaO4 的保护作用通过电化学阻抗谱和异位 X 射线光电子能谱得到证实。最后,密度泛函理论计算和与氧化惰性 Li2ZrCl6 阴极化合物的比较测试阐明了增强性能的机制,特别是 Zn 掺杂抑制 Ni2+ 迁移,强调了正极结构稳定性在全固态电池中的重要性。