当前位置:
X-MOL 学术
›
Prog. Mater. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A materials science approach to extracellular matrices
Progress in Materials Science ( IF 33.6 ) Pub Date : 2024-10-16 , DOI: 10.1016/j.pmatsci.2024.101391 Nathalie Bock, Martina Delbianco, Michaela Eder, Richard Weinkamer, Shahrouz Amini, Cecile M. Bidan, Amaia Cipitria, Shaun P. Collin, Larisa M. Haupt, Jacqui McGovern, Flavia Medeiros Savi, Yi-Chin Toh, Dietmar W. Hutmacher, Peter Fratzl
Progress in Materials Science ( IF 33.6 ) Pub Date : 2024-10-16 , DOI: 10.1016/j.pmatsci.2024.101391 Nathalie Bock, Martina Delbianco, Michaela Eder, Richard Weinkamer, Shahrouz Amini, Cecile M. Bidan, Amaia Cipitria, Shaun P. Collin, Larisa M. Haupt, Jacqui McGovern, Flavia Medeiros Savi, Yi-Chin Toh, Dietmar W. Hutmacher, Peter Fratzl
Extracellular matrices (ECMs) are foundational to all biological systems and naturally evolved as an intersection between living systems and active materials. Despite extensive study, research on ECMs often overlooks their structural material complexity and systemic roles. This Perspective argues for a holistic examination of ECMs from a materials science viewpoint, emphasizing their highly variable compositions, multiscale organizations, dynamic changes of mechanical properties, and fluid interactions. By transcending taxonomic and environmental boundaries, we aim to reveal underlying principles governing architectures, functions and adaptations of ECMs, with a focus on animal, plant and biofilm ECMs. Highlighting the role of water in ECM composition and function, and road-mapping the technical challenges in characterizing these complex materials, we propose an interdisciplinary framework to advance our understanding and application of ECMs across multiple scientific fields. Key focus areas include specimen preparation, multiscale analysis, and multimethod approaches. The optimization of specimen preparation first enables us meeting both biological and experimental conditions. The use of techniques that bridge the multiscale nature of ECMs is next, followed by integration of multiple techniques that are both position- and time-resolved, including structural and spectroscopic imaging. Such a coordinated approach promises not only to enrich our knowledge of biological systems but also to encourage the development of innovative bioinspired materials, with transformative implications across environmental science, health, and biotechnology.
中文翻译:
细胞外基质的材料科学方法
细胞外基质 (ECM) 是所有生物系统的基础,作为生命系统和活性材料之间的交集自然进化。尽管进行了广泛的研究,但对 ECM 的研究往往忽视了其结构材料的复杂性和系统作用。该观点主张从材料科学的角度对 ECM 进行整体检查,强调其高度可变的成分、多尺度组织、机械性能的动态变化和流体相互作用。通过超越分类学和环境界限,我们的目标是揭示控制 ECM 的结构、功能和适应性的基本原理,重点是动物、植物和生物膜 ECM。强调水在 ECM 组成和功能中的作用,并路线图表征这些复杂材料的技术挑战,我们提出了一个跨学科框架,以促进我们对 ECM 在多个科学领域的理解和应用。重点领域包括样品制备、多尺度分析和多方法方法。首先,样品制备的优化使我们能够同时满足生物学和实验条件。接下来是使用桥接 ECM 多尺度性质的技术,然后集成多种位置和时间分辨的技术,包括结构和光谱成像。这种协调的方法不仅有望丰富我们对生物系统的了解,还有望鼓励开发创新的仿生材料,从而在环境科学、健康和生物技术方面产生变革性影响。
更新日期:2024-10-16
中文翻译:
细胞外基质的材料科学方法
细胞外基质 (ECM) 是所有生物系统的基础,作为生命系统和活性材料之间的交集自然进化。尽管进行了广泛的研究,但对 ECM 的研究往往忽视了其结构材料的复杂性和系统作用。该观点主张从材料科学的角度对 ECM 进行整体检查,强调其高度可变的成分、多尺度组织、机械性能的动态变化和流体相互作用。通过超越分类学和环境界限,我们的目标是揭示控制 ECM 的结构、功能和适应性的基本原理,重点是动物、植物和生物膜 ECM。强调水在 ECM 组成和功能中的作用,并路线图表征这些复杂材料的技术挑战,我们提出了一个跨学科框架,以促进我们对 ECM 在多个科学领域的理解和应用。重点领域包括样品制备、多尺度分析和多方法方法。首先,样品制备的优化使我们能够同时满足生物学和实验条件。接下来是使用桥接 ECM 多尺度性质的技术,然后集成多种位置和时间分辨的技术,包括结构和光谱成像。这种协调的方法不仅有望丰富我们对生物系统的了解,还有望鼓励开发创新的仿生材料,从而在环境科学、健康和生物技术方面产生变革性影响。