当前位置:
X-MOL 学术
›
Prog. Mater. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Contact resistance and interfacial engineering: Advances in high-performance 2D-TMD based devices
Progress in Materials Science ( IF 33.6 ) Pub Date : 2024-10-15 , DOI: 10.1016/j.pmatsci.2024.101390 Xiongfang Liu, Kaijian Xing, Chi Sin Tang, Shuo Sun, Pan Chen, Dong-Chen Qi, Mark B.H. Breese, Michael S. Fuhrer, Andrew T.S. Wee, Xinmao Yin
Progress in Materials Science ( IF 33.6 ) Pub Date : 2024-10-15 , DOI: 10.1016/j.pmatsci.2024.101390 Xiongfang Liu, Kaijian Xing, Chi Sin Tang, Shuo Sun, Pan Chen, Dong-Chen Qi, Mark B.H. Breese, Michael S. Fuhrer, Andrew T.S. Wee, Xinmao Yin
The development of advanced electronic devices is contingent upon sustainable material development and pioneering research breakthroughs. Traditional semiconductor-based electronic technology faces constraints in material thickness scaling and energy efficiency. Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as promising candidates for next-generation nanoelectronics and optoelectronic applications, boasting high electron mobility, mechanical strength, and a customizable band gap. Despite these merits, the Fermi level pinning effect introduces uncontrollable Schottky barriers at metal–2D-TMD contacts, challenging prediction through the Schottky-Mott rule. These barriers fundamentally lead to elevated contact resistance and limited current-delivery capability, impeding the enhancement of 2D-TMD transistor and integrated circuit properties. In this review, we succinctly outline the Fermi level pinning effect mechanism and peculiar contact resistance behavior at metal/2D-TMD interfaces. Subsequently, highlights on the recent advances in overcoming contact resistance in 2D-TMDs devices, encompassing interface interaction and hybridization, van der Waals (vdW) contacts, prefabricated metal transfer and charge-transfer doping will be addressed. Finally, the discussion extends to challenges and offers insights into future developmental prospects.
中文翻译:
接触电阻和界面工程:基于高性能 2D-TMD 的器件的进展
先进电子设备的发展取决于可持续的材料开发和开创性的研究突破。传统的基于半导体的电子技术在材料厚度、尺寸缩放和能源效率方面面临限制。原子薄的二维 (2D) 过渡金属硫化物 (TMD) 已成为下一代纳米电子学和光电应用的有前途的候选者,具有高电子迁移率、机械强度和可定制的带隙。尽管有这些优点,但费米能级固定效应在金属-2D-TMD 接触处引入了不可控的肖特基势垒,挑战了通过肖特基-莫特规则进行的预测。这些障碍从根本上导致接触电阻升高和电流传输能力受限,阻碍了 2D-TMD 晶体管和集成电路特性的增强。在这篇综述中,我们简洁地概述了金属/2D-TMD 界面的费米能级固定效应机制和奇特的接触电阻行为。随后,将重点介绍克服 2D-TMD 器件中接触电阻的最新进展,包括界面交互和混合、范德华 (vdW) 接触、预制金属转移和电荷转移掺杂。最后,讨论延伸到挑战,并提供了对未来发展前景的见解。
更新日期:2024-10-15
中文翻译:
接触电阻和界面工程:基于高性能 2D-TMD 的器件的进展
先进电子设备的发展取决于可持续的材料开发和开创性的研究突破。传统的基于半导体的电子技术在材料厚度、尺寸缩放和能源效率方面面临限制。原子薄的二维 (2D) 过渡金属硫化物 (TMD) 已成为下一代纳米电子学和光电应用的有前途的候选者,具有高电子迁移率、机械强度和可定制的带隙。尽管有这些优点,但费米能级固定效应在金属-2D-TMD 接触处引入了不可控的肖特基势垒,挑战了通过肖特基-莫特规则进行的预测。这些障碍从根本上导致接触电阻升高和电流传输能力受限,阻碍了 2D-TMD 晶体管和集成电路特性的增强。在这篇综述中,我们简洁地概述了金属/2D-TMD 界面的费米能级固定效应机制和奇特的接触电阻行为。随后,将重点介绍克服 2D-TMD 器件中接触电阻的最新进展,包括界面交互和混合、范德华 (vdW) 接触、预制金属转移和电荷转移掺杂。最后,讨论延伸到挑战,并提供了对未来发展前景的见解。