当前位置: X-MOL 学术J. Comb. Optim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
New approximations for monotone submodular maximization with knapsack constraint
Journal of Combinatorial Optimization ( IF 0.9 ) Pub Date : 2024-10-13 , DOI: 10.1007/s10878-024-01214-x
Hongmin W. Du, Xiang Li, Guanghua Wang

Given a monotone submodular set function with a knapsack constraint, its maximization problem has two types of approximation algorithms with running time \(O(n^2)\) and \(O(n^5)\), respectively. With running time \(O(n^5)\), the best performance ratio is \(1-1/e\). With running time \(O(n^2)\), the well-known performance ratio is \((1-1/e)/2\) and an improved one is claimed to be \((1-1/e^2)/2\) recently. In this paper, we design an algorithm with running \(O(n^2)\) and performance ratio \(1-1/e^{2/3}\), and an algorithm with running time \(O(n^3)\) and performance ratio 1/2.



中文翻译:


使用背负约束的单调子模最大化的新近似值



给定一个具有背负约束的单调子模集函数,其最大化问题具有两种类型的近似算法,分别运行时间为 \(O(n^2)\)\(O(n^5)\)。运行时间 \(O(n^5)\) 时,最佳性能比为 \(1-1/e\)。在运行时间\(O(n^2)\)的情况下,众所周知的性能比是\((1-1/e)/2\),而最近的改进率据称是\((1-1/e^2)/2\)。在本文中,我们设计了一种运行时间 \(O(n^2)\) 和性能比率 \(1-1/e^{2/3}\) 的算法,以及一种运行时间 \(O(n^3)\) 和性能比率 1/2 的算法。

更新日期:2024-10-14
down
wechat
bug