当前位置: X-MOL 学术J. Comb. Optim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Explicit construction of mixed dominating sets in generalized Petersen graphs
Journal of Combinatorial Optimization ( IF 0.9 ) Pub Date : 2024-10-14 , DOI: 10.1007/s10878-024-01222-x
Meysam Rajaati Bavil Olyaei, Mohsen Alambardar Meybodi, Mohammad Reza Hooshmandasl, Ali Shakiba

A mixed dominating set in a graph \(G=(V,E)\) is a subset D of vertices and edges of G such that every vertex and edge in \((V\cup E)\setminus D\) is a neighbor of some elements in D. The mixed domination number of G, denoted by \(\gamma _{\textrm{md}}(G)\), is the minimum size among all mixed dominating sets of G. For natural numbers n and k, where \(n > 2k\), a generalized Petersen graph P(nk) is a graph with vertices \( \{v_0, v_1, \ldots , v_{n-1} \}\cup \{u_0, u_1, \ldots , u_{n-1}\}\) and edges \(\cup _{0 \le i \le n-1} \{v_{i} v_{i+1}, v_iu_i, u_iu_{i+k}\}\) where subscripts are modulo n. In this paper, we explicitly construct an optimal mixed dominating set for generalized Petersen graphs P(nk) for \(k \in \{1, 2\}\). Moreover, we establish some upper bound on mixed domination number for other generalized Petersen graphs.



中文翻译:


广义 Petersen 图中混合支配集的显式构造



图中混合支配集 \(G=(V,E)\)G 的顶点和边的子集 D,使得 \((V\cup E)\setminus D\) 中的每个顶点和边都是 D 中某些元素的邻居。G 的混合支配数,用 \(\gamma _{\textrm{md}}(G)\) 表示,是所有混合支配 G 集中的最小大小。对于自然数 nk,其中 \(n > 2k\),广义彼得森图 Pnk) 是一个顶点为 \( \{v_0, v_1, \ldots , v_{n-1} \}\cup \{u_0, u_1, \ldots , u_{n-1}\}\) 和边 \(\cup _{0 \le i \le n-1} \{v_{i} v_{i+1}, v_iu_i, u_iu_{i+k}\}\) 的图,其中下标取模 n。在本文中,我们为 \(k \in \{1, 2\}\) 的广义彼得森图 Pnk) 显式构建了一个最优混合支配集。此外,我们为其他广义 Petersen 图建立了一些混合支配数的上限。

更新日期:2024-10-14
down
wechat
bug