当前位置:
X-MOL 学术
›
Polym. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Rapid formation of antifouling coatings via cation–π interactions
Polymer Chemistry ( IF 4.1 ) Pub Date : 2024-10-14 , DOI: 10.1039/d4py00859f Zhicheng Huang, Kaijie Zhao, Shaoyin Wei, Yingxin Hao, Qina Yu, Jingcheng Hao, Jiwei Cui, Peiyu Zhang
Polymer Chemistry ( IF 4.1 ) Pub Date : 2024-10-14 , DOI: 10.1039/d4py00859f Zhicheng Huang, Kaijie Zhao, Shaoyin Wei, Yingxin Hao, Qina Yu, Jingcheng Hao, Jiwei Cui, Peiyu Zhang
To decrease the adhesion of proteins, bacteria, and cells and increase the usage duration of implants, minimizing biofouling is crucial in medical industries. Traditionally, antifouling coatings are covalently bonded to substrates, a process that can be time-consuming or substrate-dependent. In this study, we synthesized both block and random copolymers using poly(ethylene glycol) methyl ether methacrylate (PEGMA) and methacryloxyethyltrimethyl ammonium chloride (METAC) through reversible addition–fragmentation chain transfer (RAFT) polymerization. These copolymers can be adsorbed onto metal-phenolic network (MPN)-modified substrates based on cation–π interactions, rapidly forming antifouling coatings in about 6 min. Due to the wide surface modification ability of MPNs, the antifouling coatings could form on various substrates. The antifouling coatings can effectively resist the adhesion of proteins, cells, and bacteria. Moreover, block copolymers exhibited superior antifouling abilities compared to random copolymers. Notably, the antifouling performance of copolymers can be promoted by increasing the amount of PEGMA and METAC. The advantage of the reported method is the rapid preparation of antifouling coatings on various substrates. In addition, the study provides an insight into the factors influencing the strength of cation–π interactions.
中文翻译:
通过阳离子-π相互作用快速形成防污涂层
为了减少蛋白质、细菌和细胞的粘附并延长植入物的使用时间,最大限度地减少生物污染在医疗行业中至关重要。传统上,防污涂料与基材共价键合,这一过程可能非常耗时或取决于基材。在这项研究中,我们使用聚(乙二醇)甲基醚甲基丙烯酸酯 (PEGMA) 和甲基丙烯氧乙基三甲基氯化铵 (METAC) 通过可逆加成-碎裂链转移 (RAFT) 聚合合成了嵌段和无规共聚物。这些共聚物可以基于阳离子-π相互作用吸附到金属酚醛网络 (MPN) 改性的基材上,在大约 6 分钟内快速形成防污涂层。由于 MPN 具有广泛的表面改性能力,防污涂层可以在各种基材上形成。防污涂层可以有效抵抗蛋白质、细胞和细菌的粘附。此外,与无规共聚物相比,嵌段共聚物表现出优异的防污能力。值得注意的是,通过增加 PEGMA 和 METAC 的用量可以促进共聚物的防污性能。所报道的方法的优点是可以在各种基材上快速制备防污涂层。此外,该研究还提供了对影响阳离子-π相互作用强度的因素的见解。
更新日期:2024-10-14
中文翻译:
通过阳离子-π相互作用快速形成防污涂层
为了减少蛋白质、细菌和细胞的粘附并延长植入物的使用时间,最大限度地减少生物污染在医疗行业中至关重要。传统上,防污涂料与基材共价键合,这一过程可能非常耗时或取决于基材。在这项研究中,我们使用聚(乙二醇)甲基醚甲基丙烯酸酯 (PEGMA) 和甲基丙烯氧乙基三甲基氯化铵 (METAC) 通过可逆加成-碎裂链转移 (RAFT) 聚合合成了嵌段和无规共聚物。这些共聚物可以基于阳离子-π相互作用吸附到金属酚醛网络 (MPN) 改性的基材上,在大约 6 分钟内快速形成防污涂层。由于 MPN 具有广泛的表面改性能力,防污涂层可以在各种基材上形成。防污涂层可以有效抵抗蛋白质、细胞和细菌的粘附。此外,与无规共聚物相比,嵌段共聚物表现出优异的防污能力。值得注意的是,通过增加 PEGMA 和 METAC 的用量可以促进共聚物的防污性能。所报道的方法的优点是可以在各种基材上快速制备防污涂层。此外,该研究还提供了对影响阳离子-π相互作用强度的因素的见解。