当前位置: X-MOL 学术J. Comb. Optim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Approximate weak efficiency of the set-valued optimization problem with variable ordering structures
Journal of Combinatorial Optimization ( IF 0.9 ) Pub Date : 2024-10-12 , DOI: 10.1007/s10878-024-01211-0
Zhiang Zhou, Wenbin Wei, Fei Huang, Kequan Zhao

In locally convex spaces, we introduce the new notion of approximate weakly efficient solution of the set-valued optimization problem with variable ordering structures (in short, SVOPVOS) and compare it with other kinds of solutions. Under the assumption of near \(\mathcal {D}(\cdot )\)-subconvexlikeness, we establish linear scalarization theorems of (SVOPVOS) in the sense of approximate weak efficiency. Finally, without any convexity, we obtain a nonlinear scalarization theorem of (SVOPVOS). We also present some examples to illustrate our results.



中文翻译:


具有可变排序结构的集合值优化问题的近似弱效率



在局部凸空间中,我们引入了具有可变排序结构(简称 SVOPVOS)的集合值优化问题的近似弱效解的新概念,并将其与其他类型的解进行比较。在接近 \(\mathcal {D}(\cdot )\) -subconvexlikeness 的假设下,我们建立了 (SVOPVOS) 在近似弱效率意义上的线性标量定理。最后,在没有任何凸性的情况下,我们得到了 (SVOPVOS) 的非线性标量定理。我们还提供了一些示例来说明我们的结果。

更新日期:2024-10-12
down
wechat
bug