当前位置:
X-MOL 学术
›
Biotechnol. Bioeng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Online monitoring of methane transfer rates unveils nitrogen fixation dynamics in Methylococcus capsulatus
Biotechnology and Bioengineering ( IF 3.5 ) Pub Date : 2024-10-11 , DOI: 10.1002/bit.28855 Dominik Engel, Maximilian Hoffmann, Udo Kosfeld, Marcel Mann
Biotechnology and Bioengineering ( IF 3.5 ) Pub Date : 2024-10-11 , DOI: 10.1002/bit.28855 Dominik Engel, Maximilian Hoffmann, Udo Kosfeld, Marcel Mann
This study explores methane utilization by the methanotrophic microorganism Methylococcus capsulatus (Bath) for biomass production, presenting a promising approach to mitigate methane emissions and foster the development sustainable biomaterials. Traditional screening methods for gas cultivations involve either serum flasks without online monitoring or costly, low‐throughput fermenters. To address these limitations, the Respiration Activity MOnitoring System was augmented with methane sensors for real‐time methane transfer rate (MTR) monitoring in shake flasks. Utilizing online monitoring of the MTR in shake flasks results in enhanced throughput and cost‐effectiveness for cultivating M. capsulatus . Simultaneous monitoring of transfer rates for oxygen, methane, and carbon dioxide was conducted in up to eight shake flasks, ensuring the success of the cultivation process. Alterations in methane‐to‐oxygen transfer rate ratios and carbon fixation rates reveal the impact of transfer limitations on microbial growth. Detection of gas transfer limitations, exploration of process parameter influences, and investigations of medium components were enabled by the introduced method. Optimal nitrogen concentrations could be determined to ensure optimal growth. This streamlined approach accelerates the screening process, offering efficient investigations into metabolic effects, limitations, and parameter influences in gas fermentations without the need for elaborate offline sampling, significantly reducing costs and enhanced reproducibility.
中文翻译:
在线监测甲烷转移速率揭示了 Methylococcus capsulatus 的固氮动力学
本研究探讨了甲烷营养微生物 Methylococcus capsulatus (Bath) 利用甲烷生产生物质,为减少甲烷排放和促进可持续生物材料的发展提供了一种有前途的方法。传统的气体培养筛选方法包括无需在线监测的血清瓶或昂贵的低通量发酵罐。为了解决这些限制,呼吸活动监测系统增加了甲烷传感器,用于实时监测摇瓶中的甲烷转移速率 (MTR)。利用摇瓶中 MTR 的在线监测可以提高培养 M. capsulatus 的通量和成本效益。在多达 8 个摇瓶中同时监测氧气、甲烷和二氧化碳的转移速率,确保培养过程的成功。甲烷-氧转移速率比和碳固定速率的变化揭示了转移限制对微生物生长的影响。通过引入的方法,可以检测气体传递限制、探索过程参数影响和研究介质成分。可以确定最佳氮浓度以确保最佳生长。这种简化的方法可加速筛选过程,无需复杂的离线采样,即可对气体发酵中的代谢效应、限制和参数影响进行有效研究,从而显著降低成本并提高重现性。
更新日期:2024-10-11
中文翻译:
在线监测甲烷转移速率揭示了 Methylococcus capsulatus 的固氮动力学
本研究探讨了甲烷营养微生物 Methylococcus capsulatus (Bath) 利用甲烷生产生物质,为减少甲烷排放和促进可持续生物材料的发展提供了一种有前途的方法。传统的气体培养筛选方法包括无需在线监测的血清瓶或昂贵的低通量发酵罐。为了解决这些限制,呼吸活动监测系统增加了甲烷传感器,用于实时监测摇瓶中的甲烷转移速率 (MTR)。利用摇瓶中 MTR 的在线监测可以提高培养 M. capsulatus 的通量和成本效益。在多达 8 个摇瓶中同时监测氧气、甲烷和二氧化碳的转移速率,确保培养过程的成功。甲烷-氧转移速率比和碳固定速率的变化揭示了转移限制对微生物生长的影响。通过引入的方法,可以检测气体传递限制、探索过程参数影响和研究介质成分。可以确定最佳氮浓度以确保最佳生长。这种简化的方法可加速筛选过程,无需复杂的离线采样,即可对气体发酵中的代谢效应、限制和参数影响进行有效研究,从而显著降低成本并提高重现性。