当前位置: X-MOL 学术Coord. Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent advances in sorption-based photocatalytic materials for the degradation of antibiotics
Coordination Chemistry Reviews ( IF 20.3 ) Pub Date : 2024-10-11 , DOI: 10.1016/j.ccr.2024.216257
Jiaomei Yang, Shufang Tian, Zhen Song, Yingge Hao, Minghua Lu

The misuse of antibiotics and insufficient water treatment practices have resulted in significant issues, including the emergence of drug-resistant genes, posing grave threats to both human health and the ecosystem. Despite antibiotics being present in minute quantities within wastewater, their enrichment is crucial for effective removal. Thus, synthesizing photocatalysts with exceptional adsorption properties becomes pivotal factor. While previous studies have extensively covered the adsorption or photocatalytic breakdown of antibiotics, a comprehensive compilation of adsorption photocatalysts proficient in antibiotic degradation is lacking. This work explores major antibiotic classes and their fundamental properties, analyzes the impact of solution pH on antibiotic adsorption, and outlines the basic principles and key factors influencing the photocatalytic degradation of antibiotics in advanced oxidation processes (AOPs). It also briefly describes the adsorption mechanisms involving the main atoms and functional groups, including electrostatic, hydrophobic, acid-base, π-π, cation-π interactions, pore-filling, and hydrogen-bonding. Additionally, the study summarizes the energy band structures of six prevalent adsorptive photocatalytic materials and their corresponding primary mechanisms for antibiotic degradation, elucidating their applications in both antibiotic adsorption and photodegradation. These materials include graphitic carbon nitride-based, bismuth-based, metal-organic frameworks (MOFs)-based, semiconducting metal oxides-based, silver-based, graphene-based, and other photocatalysts. Moreover, it elucidates the factors augmenting adsorption performance and photocatalytic efficacy of these composite materials, underscoring the pivotal synergy between adsorption and photocatalysis for enhanced efficiency. Lastly, this paper encapsulates current concerns and outlines future research prospects in the realm of photocatalytic antibiotic degradation. It stands as a valuable resource, offering guidance for research aimed at purging antibiotics from water bodies, providing theoretical insights indispensable in crafting and synthesizing efficient photocatalytic materials for antibiotic degradation.

中文翻译:


吸附基光催化材料降解抗生素的研究进展



抗生素的滥用和水处理方法的不足导致了重大问题,包括耐药基因的出现,对人类健康和生态系统构成严重威胁。尽管废水中含有微量抗生素,但其富集对于有效去除抗生素至关重要。因此,合成具有特殊吸附性能的光催化剂成为关键因素。虽然以前的研究广泛涵盖了抗生素的吸附或光催化分解,但缺乏精通抗生素降解的吸附光催化剂的全面汇编。本工作探讨了主要的抗生素类别及其基本性质,分析了溶液 pH 值对抗生素吸附的影响,并概述了影响高级氧化过程 (AOP) 中抗生素光催化降解的基本原理和关键因素。它还简要描述了涉及主要原子和官能团的吸附机理,包括静电、疏水、酸碱、π-π、阳离子-π相互作用、孔隙填充和氢键。此外,该研究总结了六种流行的吸附光催化材料的能带结构及其相应的抗生素降解主要机制,阐明了它们在抗生素吸附和光降解中的应用。这些材料包括基于石墨氮化碳、基于铋、基于金属有机框架 (MOF)、基于半导体金属氧化物、基于银、基于石墨烯和其他光催化剂的材料。 此外,它阐明了增强这些复合材料吸附性能和光催化效能的因素,强调了吸附和光催化之间对提高效率的关键协同作用。最后,本文概括了当前关注的问题,并概述了光催化抗生素降解领域的未来研究前景。它是一种宝贵的资源,为旨在从水体中清除抗生素的研究提供指导,为制作和合成用于抗生素降解的高效光催化材料提供不可或缺的理论见解。
更新日期:2024-10-11
down
wechat
bug