当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnetoelectric nanodiscs enable wireless transgene-free neuromodulation
Nature Nanotechnology ( IF 38.1 ) Pub Date : 2024-10-11 , DOI: 10.1038/s41565-024-01798-9
Ye Ji Kim, Noah Kent, Emmanuel Vargas Paniagua, Nicolette Driscoll, Anthony Tabet, Florian Koehler, Elian Malkin, Ethan Frey, Marie Manthey, Atharva Sahasrabudhe, Taylor M. Cannon, Keisuke Nagao, David Mankus, Margaret Bisher, Giovanni de Nola, Abigail Lytton-Jean, Lorenzo Signorelli, Danijela Gregurec, Polina Anikeeva

Deep brain stimulation with implanted electrodes has transformed neuroscience studies and treatment of neurological and psychiatric conditions. Discovering less invasive alternatives to deep brain stimulation could expand its clinical and research applications. Nanomaterial-mediated transduction of magnetic fields into electric potentials has been explored as a means for remote neuromodulation. Here we synthesize magnetoelectric nanodiscs (MENDs) with a core–double-shell Fe3O4–CoFe2O4–BaTiO3 architecture (250 nm diameter and 50 nm thickness) with efficient magnetoelectric coupling. We find robust responses to magnetic field stimulation in neurons decorated with MENDs at a density of 1 µg mm−2 despite individual-particle potentials below the neuronal excitation threshold. We propose a model for repetitive subthreshold depolarization that, combined with cable theory, supports our observations in vitro and informs magnetoelectric stimulation in vivo. Injected into the ventral tegmental area or the subthalamic nucleus of genetically intact mice at concentrations of 1 mg ml−1, MENDs enable remote control of reward or motor behaviours, respectively. These findings set the stage for mechanistic optimization of magnetoelectric neuromodulation towards applications in neuroscience research.



中文翻译:


磁电纳米盘实现无线无转基因神经调控



使用植入电极的深部脑刺激改变了神经科学研究以及神经和精神疾病的治疗。发现深部脑刺激的微创替代方案可以扩大其临床和研究应用。纳米材料介导的磁场转导为电位已被探索为远程神经调控的一种手段。在这里,我们合成了具有高效磁电耦合的核-双壳层 Fe3O4-CoFe 2O4-BaTiO 3 结构(直径 250 nm,厚度 50 nm)的磁电纳米盘 (MEND)。我们发现,尽管单个粒子电位低于神经元激发阈值,但在用 1 μg mm-2 的 MEND 修饰的神经元中,对磁场刺激的强烈反应。我们提出了一个重复亚阈值去极化模型,该模型与电缆理论相结合,支持我们在体外的观察并为体内磁电刺激提供信息。以 1 mg ml -1 的浓度注射到遗传完整小鼠的腹侧被盖区或丘脑底核中,MEND 可以分别远程控制奖励或运动行为。这些发现为磁电神经调控的机理优化在神经科学研究中的应用奠定了基础。

更新日期:2024-10-11
down
wechat
bug